

# Quad 2:1 Multiplexer/ Demultiplexer Bus Switch

# 74FST3257

The **onsemi** 74FST3257 is a quad 2:1, high performance multiplexer/demultiplexer bus switch. The device is CMOS TTL compatible when operating between 4 and 5.5 Volts. The device exhibits extremely low  $R_{\rm ON}$  and adds nearly zero propagation delay. The device adds no noise or ground bounce to the system.

#### **Features**

- $R_{ON} < 4 \Omega$  Typical
- Less Than 0.25 ns-Max Delay Through Switch
- Nearly Zero Standby Current
- No Circuit Bounce
- Control Inputs are TTL/CMOS Compatible
- Pin-For-Pin Compatible With QS3257, FST3257, CBT3257
- All Popular Packages: SOIC-16, TSSOP-16, QFN16
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

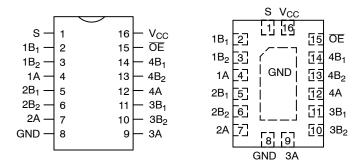


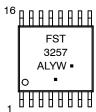

Figure 1. 16-Lead Pinout Diagrams

| S | ŌĒ | Function           |
|---|----|--------------------|
| Х | Н  | Disconnect         |
| L | L  | A = B <sub>1</sub> |
| Н | L  | A = B <sub>2</sub> |

Figure 2. Truth Table

1

# MARKING DIAGRAMS




SOIC-16 D SUFFIX CASE 751B





TSSOP-16 DT SUFFIX CASE 948F





QFN16 MN SUFFIX CASE 485AW



A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

#### PIN NAMES

| Pin                                                               | Description        |  |  |
|-------------------------------------------------------------------|--------------------|--|--|
| ŌĒ₁, ŌĒ₂                                                          | Bus Switch Enables |  |  |
| S <sub>0</sub> , S <sub>1</sub>                                   | Select Inputs      |  |  |
| A                                                                 | Bus A              |  |  |
| B <sub>1</sub> , B <sub>2</sub> , B <sub>3</sub> , B <sub>4</sub> | Bus B              |  |  |

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

# 74FST3257

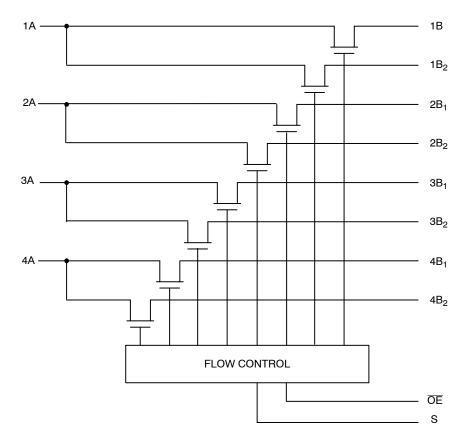



Figure 3. Logic Diagram

## **ORDERING INFORMATION**

| Device Order Number | Package               | Shipping <sup>†</sup>                                |
|---------------------|-----------------------|------------------------------------------------------|
| 74FST3257DR2G       | SOIC-16               | OF OO Unite / Tana & Book                            |
| NLV74FST3257DR2G*   | (Pb-Free)             | 2500 Units / Tape & Reel                             |
| 74FST3257DTR2G      | TSSOP-16<br>(Pb-Free) | 2500 Units / Tape & Reel                             |
| 74FST3257MNTWG      | QFN16<br>(Pb-Free)    | 3000 Units / Tape & Reel                             |
| 74FST3257MN2TWG     | QFN16<br>(Pb-Free)    | 3000 Units / Tape & Reel<br>(4mm pitch carrier tape) |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>\*</sup>NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

#### 74FST3257

#### **MAXIMUM RATINGS**

| Symbol               | Parameter                                                                                            | Value                  | Units |
|----------------------|------------------------------------------------------------------------------------------------------|------------------------|-------|
| V <sub>CC</sub>      | DC Supply Voltage                                                                                    | -0.5 to +7.0           | V     |
| VI                   | DC Input Voltage                                                                                     | -0.5 to +7.0           | V     |
| Vo                   | DC Output Voltage                                                                                    | -0.5 to +7.0           | V     |
| I <sub>IK</sub>      | DC Input Diode Current VI < GND                                                                      | -50                    | mA    |
| I <sub>OK</sub>      | DC Output Diode Current V <sub>O</sub> < GND                                                         | -50                    | mA    |
| Io                   | DC Output Sink Current                                                                               | 128                    | mA    |
| I <sub>CC</sub>      | DC Supply Current per Supply Pin                                                                     | ±100                   | mA    |
| I <sub>GND</sub>     | DC Ground Current per Ground Pin                                                                     | ±100                   | mA    |
| T <sub>STG</sub>     | Storage Temperature Range                                                                            | -65 to +150            | °C    |
| TL                   | Lead Temperature, 1 mm from Case for 10 Seconds                                                      | 260                    | °C    |
| TJ                   | Junction Temperature Under Bias                                                                      | +150                   | °C    |
| $\theta_{\sf JA}$    | Thermal Resistance SOIC TSSOP QFN                                                                    | 125<br>170<br>N/A      | °C/W  |
| MSL                  | Moisture Sensitivity                                                                                 | Level 1                |       |
| F <sub>R</sub>       | Flammability Rating Oxygen Index: 28 to 34                                                           | UL 94 V-0 @ 0.125 in   |       |
| V <sub>ESD</sub>     | ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3) | > 2000<br>> 200<br>N/A | V     |
| I <sub>Latchup</sub> | Latchup Performance Above V <sub>CC</sub> and Below GND at 85°C (Note 4)                             | ±500                   | mA    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Tested to EIA/JESD22-A114-A.
- 2. Tested to EIA/JESD22-A115-A.
- 3. Tested to JESD22-C101-A.
- 4. Tested to EIA/JESD78.

# **RECOMMENDED OPERATING CONDITIONS**

| Symbol          | Parameter                                        |                                           | Min | Max     | Units |
|-----------------|--------------------------------------------------|-------------------------------------------|-----|---------|-------|
| V <sub>CC</sub> | Supply Voltage<br>Operating, Data Retention Only |                                           | 4.0 | 5.5     | V     |
| VI              | Input Voltage (Note 5)                           |                                           | 0   | 5.5     | V     |
| Vo              | Output Voltage (HIGH or LOW State)               |                                           | 0   | 5.5     | ٧     |
| T <sub>A</sub>  | Operating Free-Air Temperature                   |                                           | -40 | +85     | °C    |
| Δt/ΔV           |                                                  | vitch Control Input<br>CC = 5.0 V ± 0.5 V | 0   | DC<br>5 | ns/V  |

5. Unused control inputs may not be left open. All control inputs must be tied to a high or low logic input voltage level.

#### 74FST3257

#### DC ELECTRICAL CHARACTERISTICS

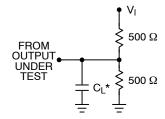
|                  |                                       |                                                                | V <sub>cc</sub> | T <sub>A</sub> = | –40°C to + | 85°C |       |
|------------------|---------------------------------------|----------------------------------------------------------------|-----------------|------------------|------------|------|-------|
| Symbol           | Parameter                             | Conditions                                                     | (V)             | Min              | Тур*       | Max  | Units |
| V <sub>IK</sub>  | Clamp Diode Voltage                   | I <sub>IN</sub> = -18 mA                                       | 4.5             |                  |            | -1.2 | V     |
| V <sub>IH</sub>  | High-Level Input Voltage              |                                                                | 4.0 to 5.5      | 2.0              |            |      | V     |
| V <sub>IL</sub>  | Low-Level Input Voltage               |                                                                | 4.0 to 5.5      |                  |            | 0.8  | V     |
| I <sub>I</sub>   | Input Leakage Current                 | 0 ≤ V <sub>IN</sub> ≤ 5.5 V                                    | 5.5             |                  |            | ±1.0 | μΑ    |
| l <sub>OZ</sub>  | Off-State Leakage Current             | $0 \le A, B \le V_{CC}$                                        | 5.5             |                  |            | ±1.0 | μΑ    |
| R <sub>ON</sub>  | Switch On Resistance (Note 6)         | V <sub>IN</sub> = 0 V, I <sub>IN</sub> = 64 mA                 | 4.5             |                  | 4          | 7    | Ω     |
|                  |                                       | V <sub>IN</sub> = 0 V, I <sub>IN</sub> = 30 mA                 | 4.5             |                  | 4          | 7    |       |
|                  |                                       | V <sub>IN</sub> = 2.4 V, I <sub>IN</sub> = 15 mA               | 4.5             |                  | 8          | 15   |       |
|                  |                                       | V <sub>IN</sub> = 2.4 V, I <sub>IN</sub> = 15 mA               | 4.0             |                  | 11         | 20   |       |
| I <sub>CC</sub>  | Quiescent Supply Current              | V <sub>IN</sub> = V <sub>CC</sub> or GND, I <sub>OUT</sub> = 0 | 5.5             |                  |            | 3    | μΑ    |
| Δl <sub>CC</sub> | Increase In I <sub>CC</sub> per Input | One input at 3.4 V,<br>Other inputs at V <sub>CC</sub> or GND  | 5.5             |                  |            | 2.5  | mA    |

#### **AC ELECTRICAL CHARACTERISTICS**

|                    |                                                  |                                            | $T_A = -40$ °C to +85°C<br>$C_L = 50$ pF, RU = RD = 500 $\Omega$ |          |                   |       |       |
|--------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|----------|-------------------|-------|-------|
|                    |                                                  |                                            | V <sub>CC</sub> = 4                                              | .5–5.5 V | V <sub>CC</sub> = | 4.0 V | ]     |
| Symbol             | Parameter                                        | Conditions                                 | Min                                                              | Max      | Min               | Max   | Units |
| t <sub>PHL</sub> , | Prop Delay Bus to Bus (Note 7)                   | V <sub>I</sub> = OPEN                      |                                                                  | 0.25     |                   | 0.25  | ns    |
| t <sub>PLH</sub>   | Prop Delay, Select to Bus A                      |                                            | 1.0                                                              | 4.7      |                   | 5.2   |       |
| t <sub>PZH</sub> , | Output Enable Time, Select to Bus B              | V <sub>I</sub> = 7 V for t <sub>PZL</sub>  | 1.0                                                              | 5.2      |                   | 5.7   | ns    |
| t <sub>PZL</sub>   | Output Enable Time, I <sub>OE</sub> to Bus A, B  | V <sub>I</sub> = OPEN for t <sub>PZH</sub> | 1.0                                                              | 5.1      |                   | 5.6   |       |
| t <sub>PHZ</sub> , | Output Disable Time, Select to Bus B             | $V_I = 7 \text{ V for } t_{PLZ}$           | 1.0                                                              | 5.2      |                   | 5.5   | ns    |
| t <sub>PLZ</sub>   | Output Disable Time, I <sub>OE</sub> to Bus A, B | V <sub>I</sub> = OPEN for t <sub>PHZ</sub> | 1.0                                                              | 5.5      |                   | 5.5   |       |

<sup>7.</sup> This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

# **CAPACITANCE** (Note 8)


| Symbol           | Parameter                       | Conditions                              | Тур | Max | Units |
|------------------|---------------------------------|-----------------------------------------|-----|-----|-------|
| C <sub>IN</sub>  | Control Pin Input Capacitance   | V <sub>CC</sub> = 5.0 V                 | 3   |     | pF    |
| C <sub>I/O</sub> | A Port Input/Output Capacitance | V <sub>CC</sub> , <del>OE</del> = 5.0 V | 7   |     | pF    |
| C <sub>I/O</sub> | B Port Input/Output Capacitance | V <sub>CC</sub> , <del>OE</del> = 5.0 V | 5   |     | pF    |

<sup>8.</sup>  $T_A = +25^{\circ}C$ , f = 1 MHz, Capacitance is characterized but not tested.

<sup>\*</sup>Typical values are at V<sub>CC</sub> = 5.0 V and T<sub>A</sub> = 25°C.

6. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

# **AC Loading and Waveforms**



# NOTES:

- 1. Input driven by 50  $\Omega$  source terminated in 50  $\Omega.$
- 2. CL includes load and stray capacitance.

Figure 4. AC Test Circuit

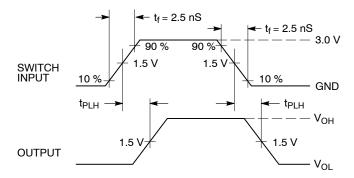



Figure 5. Propagation Delays

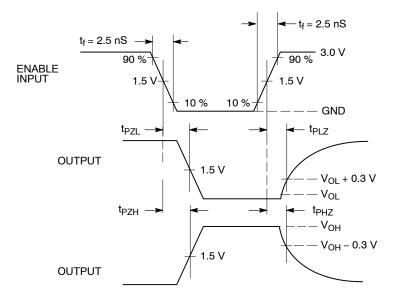
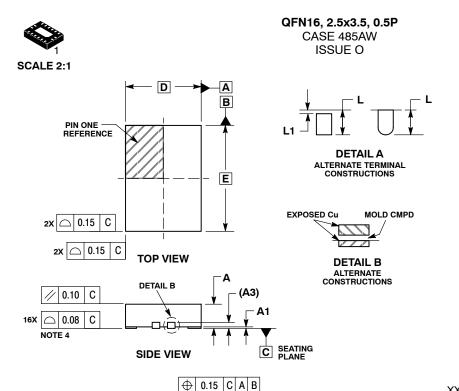



Figure 6. Enable/Disable Delays


 $<sup>*</sup>C_L = 50 pF$ 

DETAIL A

е

e/2





⊕ 0.15 C A B

16X b

Ф 0.05 C NOTE 3

0.10 C A B

E2

**BOTTOM VIEW** 



#### **DATE 11 DEC 2008**

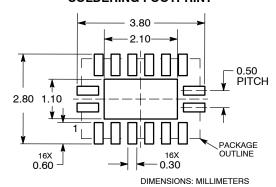
#### NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSIONS & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.30 MM FROM TERMINAL.
  COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

|     |   | MILLIN   | IETERS |  |  |
|-----|---|----------|--------|--|--|
| DII | Λ | MIN      | MAX    |  |  |
| Α   |   | 0.80     | 1.00   |  |  |
| A1  |   | 0.00     | 0.05   |  |  |
| A3  |   | 0.20 REF |        |  |  |
| b   |   | 0.20     | 0.30   |  |  |
| D   |   | 2.50 BSC |        |  |  |
| D2  |   | 0.85     | 1.15   |  |  |
| Е   |   | 3.50     | BSC    |  |  |
| E2  |   | 1.85     | 2.15   |  |  |
| е   |   | 0.50     | BSC    |  |  |
| K   |   | 0.20     |        |  |  |
| L   |   | 0.35     | 0.45   |  |  |
| L1  | Ī |          | 0.15   |  |  |

#### **GENERIC MARKING DIAGRAM\***




= Specific Device Code XXXX Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week

= Pb-Free Package

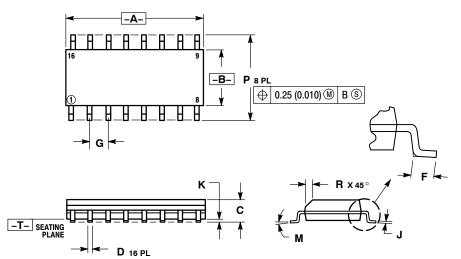
(Note: Microdot may be in either location) \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■" may or may not be present. Some products

## may not follow the Generic Marking. **RECOMMENDED SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|
| DESCRIPTION:     | QFN16, 2.5X3.5, 0.5P                                                                                                                                                    |  | PAGE 1 OF 1 |


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.





#### SOIC-16 CASE 751B-05 **ISSUE K**

**DATE 29 DEC 2006** 



⊕ 0.25 (0.010) M T B S A S

- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

  2. CONTROLLING DIMENSION: MILLIMETER.

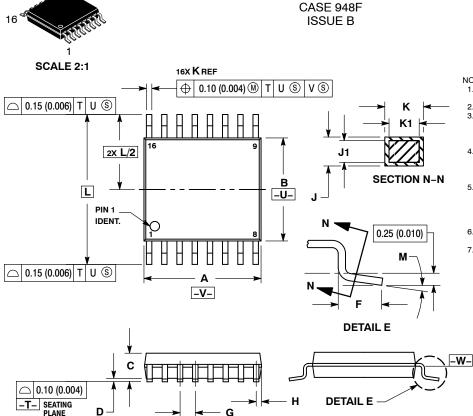
  3. DIMENSIONS A AND B DO NOT INCLUDE MOLD ENGREPHING.

- PROTRUSION.

  MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR
  PROTRUSION. ALLOWABLE DAMBAR PROTRUSION.
  SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
  DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIN | IETERS | INC       | HES   |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 9.80   | 10.00  | 0.386     | 0.393 |  |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |  |
| U   | 1.35   | 1.75   | 0.054     | 0.068 |  |
| D   | 0.35   | 0.49   | 0.014     | 0.019 |  |
| F   | 0.40   | 1.25   | 0.016     | 0.049 |  |
| G   | 1.27   | BSC    | 0.050 BSC |       |  |
| 7   | 0.19   | 0.25   | 0.008     | 0.009 |  |
| K   | 0.10   | 0.25   | 0.004     | 0.009 |  |
| M   | 0°     | 7°     | 0°        | 7°    |  |
| Р   | 5.80   | 6.20   | 0.229     | 0.244 |  |
| R   | 0.25   | 0.50   | 0.010     | 0.019 |  |

| STYLE 1: |               | STYLE 2: |                | STYLE 3: |                      | STYLE 4: |                   |                           |
|----------|---------------|----------|----------------|----------|----------------------|----------|-------------------|---------------------------|
|          | COLLECTOR     | PIN 1.   | CATHODE        |          | COLLECTOR, DYE #1    | PIN 1.   | COLLECTOR, DYE #1 |                           |
| 2.       | BASE          | 2.       | ANODE          | 2.       | BASE, #1             | 2.       | COLLECTOR, #1     |                           |
| 3.       | EMITTER       | 3.       | NO CONNECTION  | 3.       | EMITTER, #1          | 3.       | COLLECTOR, #2     |                           |
| 4.       | NO CONNECTION | 4.       | CATHODE        | 4.       | COLLECTOR, #1        | 4.       | COLLECTOR, #2     |                           |
| 5.       | EMITTER       | 5.       | CATHODE        | 5.       | COLLECTOR, #2        | 5.       | COLLECTOR, #3     |                           |
| 6.       | BASE          | 6.       | NO CONNECTION  | 6.       | BASE, #2             | 6.       | COLLECTOR, #3     |                           |
| 7.       | COLLECTOR     | 7.       |                | 7.       |                      | 7.       | COLLECTOR, #4     |                           |
| 8.       | COLLECTOR     | 8.       | CATHODE        | 8.       | COLLECTOR, #2        | 8.       | COLLECTOR, #4     |                           |
| 9.       | BASE          | 9.       | CATHODE        | 9.       | COLLECTOR, #3        | 9.       | BASE, #4          |                           |
| 10.      | EMITTER       | 10.      | ANODE          | 10.      |                      | 10.      | EMITTER, #4       |                           |
| 11.      | NO CONNECTION | 11.      | NO CONNECTION  |          | EMITTER, #3          | 11.      | BASE, #3          |                           |
| 12.      | EMITTER       |          | CATHODE        |          | COLLECTOR, #3        | 12.      |                   | RECOMMENDED               |
| 13.      | BASE          | 13.      | CATHODE        | 13.      |                      | 13.      | BASE, #2          |                           |
| 14.      | COLLECTOR     | 14.      | NO CONNECTION  | 14.      |                      | 14.      | EMITTER, #2       | SOLDERING FOOTPRINT*      |
| 15.      | EMITTER       | 15.      | ANODE          |          |                      | 15.      | BASE, #1          |                           |
| 16.      | COLLECTOR     | 16.      | CATHODE        | 16.      | COLLECTOR, #4        | 16.      | EMITTER, #1       | 8X                        |
|          |               |          |                |          |                      |          |                   | <b>←</b> 6.40 <b>→</b>    |
| STYLE 5: |               | STYLE 6: |                | STYLE 7: |                      |          |                   | 10/110 -                  |
| PIN 1.   | DRAIN, DYE #1 |          | CATHODE        | PIN 1.   | SOURCE N-CH          |          |                   | 16X 1.12                  |
| 2.       | DRAIN, #1     | 2.       | CATHODE        | 2.       | COMMON DRAIN (OUTPUT | Γ)       |                   |                           |
| 3.       | DRAIN, #2     | 3.       | CATHODE        | 3.       | COMMON DRAIN (OUTPUT | Γ)       | 1                 | 1 16                      |
| 4.       | DRAIN, #2     | 4.       | CATHODE        | 4.       | GATE P-CH            |          | <u> </u>          |                           |
| 5.       | DRAIN, #3     | 5.       | CATHODE        | 5.       | COMMON DRAIN (OUTPUT |          | -                 |                           |
| 6.       | DRAIN, #3     | 6.       | CATHODE        | 6.       | COMMON DRAIN (OUTPUT |          | 16X               | _   _                     |
| 7.       | DRAIN, #4     | 7.       |                | 7.       |                      | 7)       | 0.58 -            |                           |
| 8.       | DRAIN, #4     | 8.       | CATHODE        | 8.       | SOURCE P-CH          |          |                   |                           |
| 9.       | GATE, #4      | 9.       | ANODE          | 9.       | SOURCE P-CH          | _        |                   |                           |
| 10.      | SOURCE, #4    | 10.      | ANODE          | 10.      | COMMON DRAIN (OUTPUT |          | -                 | <del></del> - <del></del> |
| 11.      | GATE, #3      |          | ANODE          | 11.      |                      |          |                   |                           |
| 12.      | SOURCE, #3    |          | ANODE          | 12.      |                      | )        |                   | _   _                     |
| 13.      | GATE, #2      |          | ANODE          | 13.      | GATE N-CH            | -        |                   |                           |
| 14.      | SOURCE, #2    |          | ANODE<br>ANODE | 14.      |                      |          |                   | ☐ PITCH                   |
| 15.      | GATE, #1      | 15.      |                | 15.      | COMMON DRAIN (OUTPUT | )        |                   |                           |
| 16.      | SOURCE, #1    | 16.      | ANODE          | 16.      | SOURCE N-CH          |          |                   |                           |
|          |               |          |                |          |                      |          |                   | □8 9 <del></del>          |
|          |               |          |                |          |                      |          |                   |                           |
|          |               |          |                |          |                      |          |                   | DIMENSIONS: MILLIMETERS   |


\*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

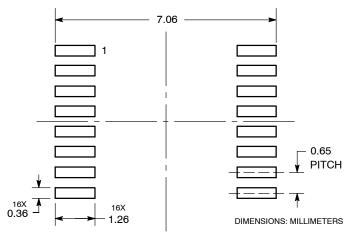
| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOIC-16     |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.



**DATE 19 OCT 2006** 




TSSOP-16 WB

#### NOTES

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
  DIMENSION B DOES NOT INCLUDE
  INTERLEAD FLASH OR PROTRUSION.
- INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION SHALL
  NOT EXCEED 0.25 (0.010) PER SIDE.
  DIMENSION K DOES NOT INCLUDE DAMBAR
  PROTRUSION. ALLOWABILE DAMBAR
  PROTRUSION SHALL BE 0.08 (0.003) TOTAL
  IN EXCESS OF THE K DIMENSION AT
  MAXIMUM MATERIAL CONDITION.
  TERMINIAL NILMBERS ADE SUCIUMI ECIP.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
| DIM | MIN         | MAX  | MIN       | MAX   |
| Α   | 4.90        | 5.10 | 0.193     | 0.200 |
| В   | 4.30        | 4.50 | 0.169     | 0.177 |
| С   |             | 1.20 |           | 0.047 |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |
| F   | 0.50        | 0.75 | 0.020     | 0.030 |
| G   | 0.65 BSC    |      | 0.026 BSC |       |
| Н   | 0.18        | 0.28 | 0.007     | 0.011 |
| J   | 0.09        | 0.20 | 0.004     | 0.008 |
| J1  | 0.09        | 0.16 | 0.004     | 0.006 |
| K   | 0.19        | 0.30 | 0.007     | 0.012 |
| K1  | 0.19        | 0.25 | 0.007     | 0.010 |
| L   | 6.40 BSC    |      | 0.252 BSC |       |
| М   | 0 °         | 8 °  | 0 °       | 8 °   |

#### **RECOMMENDED** SOLDERING FOOTPRINT\*



<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **GENERIC MARKING DIAGRAM\***



= Specific Device Code XXXX Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | TSSOP-16    |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales