ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
LCD and Camera EMI Filter Array with ESD Protection

Features

- High bandwidth, high RF rejection filter array
- Six and eight channels of EMI filtering
- Utilizes Praetorian® inductor-based design technology for true L-C filter implementation
- OptiGuard ${ }^{\text {rM }}$ coating for improved reliability
- $\pm 15 \mathrm{kV}$ ESD protection on each channel (IEC 61000-4-2 Level 4, contact discharge)
- $\pm 30 \mathrm{kV}$ ESD protection on each channel (HBM)
- Better than 40 dB of attenuation at 1 GHz
- Maintains signal integrity for signals that have a risetime and falltime as fast as 2 ns
- Chip Scale Package features extremely low lead inductance for optimum filter and ESD performance
- 15 -bump, $3.006 \mathrm{~mm} \times 1.376 \mathrm{~mm}$ footprint Chip Scale Package (CM1450-06CS/CP)
- 20 -bump, $4.006 \mathrm{~mm} \times 1.376 \mathrm{~mm}$ footprint Chip Scale Package (CM1450-08CS/CP)
- RoHS-compliant, lead-free finishing

Applications

- LCD and Camera data lines in mobile handsets
- I/O port protection for mobile handsets, notebook computers, PDAs, etc.
- EMI filtering for data phones in cell phones, PDAs or notebook computers
- Wireless handsets / cell phones
- Handheld PCs/PDAs
- LCD and camera modules

Product Description

The CM1450 comprises a family of inductor-capacitor (L-C) based EMI filter arrays with integrated ESD protection in a CSP form factor. The CM1450-06 and CM1450-08 are configured in 6 and 8 channel formats respectively. Each EMI filter channel of the CM1450 is implemented as a 5-pole L-C filter where the component values are $14 \mathrm{pF}-17 \mathrm{nH}-14 \mathrm{pF}-17 \mathrm{nF}-$ 14 pF . The CM1450's roll-off frequency at -10 dB attenuation is 400 MHz and can be used in applications where the data rates are as high as 160 Mbps while providing greater than 35 dB over the 800 MHz to 2.7 GHz frequency range. The parts integrate ESD protection diodes on every pin, which provide a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The ESD protection diodes connected to the filter ports safely dissipate ESD strikes of $\pm 15 \mathrm{kV}$, exceeding the Level 4 requirement of the IEC61000-4-2 international standard. Using the MIL-STD-883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than $\pm 30 \mathrm{kV}$.

This device is particularly well-suited for portable electronics (e.g. wireless handsets, PDAs) because of its small package format and easy-to-use pin assignments. In particular, the CM1450 is ideal for EMI filtering and protecting data and control lines for the LCD display and camera interface in wireless handsets while maintaining the integrity of signals that have rise/fall times as fast as 2 ns .

The CM1450 incorporates OptiGuard ${ }^{\text {TM }}$ which results in improved reliability at assembly. The CM1450 is available in a space-saving, low-profile Chip Scale Package with lead-free finishing.

Electrical Schematic

1 of n EMI Filtering + ESD Channels ($\mathrm{n}=6$ for CM1450-06, 8 for CM1450-08, $\mathrm{m}=\mathrm{n} / 2$) for expanded pin information

PACKAGE / PINOUT DIAGRAMS
BOTTOM VIEW (Bumps Up View)
Notes: 1) These drawings are not to scale. CM1450-08CS/CP 20-Bump CSP Package 2) Lead-free devices are specified by using a "+" character for the top side orientation mark.

CM1450

PIN DESCRIPTIONS

CM1450-06	CM1450-08			CM1450-06	CM1450-08		
PIN(s)	PIN(s)	NAME	DESCRIPTION	PIN(s)	PIN(s)	NAME	DESCRIPTION
A1	A1	FILTER1	Filter Channel 1	C1	C1	FILTER1	Filter Channel 1
A2	A2	FILTER2	Filter Channel 2	C2	C2	FILTER2	Filter Channel 2
A3	A3	FILTER3	Filter Channel 3	C3	C3	FILTER3	Filter Channel 3
A4	A4	FILTER4	Filter Channel 4	C4	C4	FILTER4	Filter Channel 4
A5	A5	FILTER5	Filter Channel 5	C5	C5	FILTER5	Filter Channel 5
A6	A6	FILTER6	Filter Channel 6	C6	C6	FILTER6	Filter Channel 6
-	A7	FILTER7	Filter Channel 7	-	C7	FILTER7	Filter Channel 7
-	A8	FILTER8	Filter Channel 8	-	C8	FILTER8	Filter Channel 8
B1-B3	B1-B4	GND	Device Ground				

Ordering Information

PART NUMBERING INFORMATION					
		Ordering Part Number	Standard Finish	Lead-free Finish	

Note 1: Parts are shipped in Tape \& Reel form unless otherwise specified.
Note 2: Lead-free devices are specified by using a " $\boldsymbol{+}$ " character for the top side orientation mark.

Specifications

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNITS
Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
Current per Inductor	30	mA
DC Package Power Rating	500	mW

STANDARD OPERATING CONDITIONS

PARAMETER	RATING	UNITS
Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL OPERATING CHARACTERISTICS ${ }^{\text {(NOTE 1) }}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{L}_{\text {тот }}$	Total Channel Inductance ($\left.\mathrm{L}_{1}+\mathrm{L}_{2}\right)$			34		nH
$\mathrm{L}_{1}, \mathrm{~L}_{2}$	Inductance			17		nH
$\mathrm{R}_{\text {DC IN-OUT }}$	DC Channel Resistance			18		Ω
$\mathrm{C}_{\text {тот }}$	Total Channel Capacitance ($\left.\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\right)$	At 2.5V DC, 1MHz, 30mV AC, Note 3	33.6	42	50.4	pF
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$	Capacitance	At 2.5V DC, 1MHz, 30mV AC, Note 3	11.2	14	16.8	pF
f_{c}	Cut-off Frequency $Z_{\text {SOURCE }}=50 \Omega, Z_{\text {LOAD }}=50 \Omega$			137		MHz
$\mathrm{f}_{\text {Ro }}$	Roll-off Frequency at -10dB Attenuation $Z_{\text {SOURCE }}=50 \Omega, Z_{\text {LOAD }}=50 \Omega$			400		MHz
$\mathrm{V}_{\text {DIIOE }}$	Diode Standoff Voltage	$\mathrm{I}_{\text {DIOOE }}=10 \mu \mathrm{~A}$		6.0		V
$\mathrm{I}_{\text {LEAK }}$	Diode Leakage Current (reverse bias)	$\mathrm{V}_{\text {DIOOE }}=+3.3 \mathrm{~V}$		0.1	1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SIG }}$	Signal Voltage Positive Clamp Negative Clamp	$\mathrm{I}_{\text {LOAD }}=10 \mathrm{~mA}$	$\begin{gathered} 5.6 \\ -1.5 \end{gathered}$	$\begin{gathered} 6.8 \\ -0.8 \end{gathered}$	$\begin{gathered} 9.0 \\ -0.4 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$V_{\text {ESD }}$	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	Note 2	$\begin{aligned} & \pm 30 \\ & \pm 15 \end{aligned}$			kV kV
$\mathrm{R}_{\text {DYN }}$	Dynamic Resistance Positive Negative			$\begin{aligned} & 2.30 \\ & 0.90 \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

Note 1: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Note 2: ESD applied to input and output pins with respect to GND, one at a time.

Performance Information

Typical Filter Performance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, DC Bias=0V, 50 Ohm Environment)

Figure 1. Insertion Loss vs. Frequency (A1-C1 to GND B1)

Figure 2. Insertion Loss vs. Frequency (A2-C2 to GND B1)

Performance Information (cont'd)

Typical Filter Performance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, DC Bias=0V, 50 Ohm Environment)

Figure 3. Insertion Loss vs. Frequency (A3-C3 to GND B2)

Figure 4. Insertion Loss vs. Frequency (A4-C4 to GND B2)

Performance Information (cont'd)

Typical Filter Performance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, DC Bias=0V, 50 Ohm Environment)

Figure 5. Insertion Loss vs. Frequency (A5-C5 to GND B3)

Figure 6. Insertion Loss vs. Frequency (A6-C6 to GND B3)

Performance Information (cont'd)

Typical Filter Performance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, DC Bias=0V, 50 Ohm Environment)

Figure 7. Insertion Loss vs. Frequency (A7-C7 to GND B4)

Figure 8. Insertion Loss vs. Frequency (A8-C8 to GND B4)

Performance Information (cont'd)

Figure 9. Filter Capacitance vs. Input Voltage over Temperature (normalized to capacitance at 2.5 VDC and $25^{\circ} \mathrm{C}$)

Transient Response Characteristics

Figure 10. Simulated Transient Response
(input signal risetime and falltime $=\mathbf{2 n s}$, clocked at 25,50 and 75 MHz , 15Ω Source Resistance, 5pF Load)

CM1450

Application Information

PARAMETER	VALUE
Pad Size on PCB	0.240 mm
Pad Shape	Round
Pad Definition	Non-Solder Mask defined pads
Solder Mask Opening	0.290 mm Round
Solder Stencil Thickness	$0.125 \mathrm{~mm}-0.150 \mathrm{~mm}$
Solder Stencil Aperture Opening (laser cut, 5\% tapered walls)	0.300 mm Round
Solder Flux Ratio	$50 / 50$ by volume
Solder Paste Type	No Clean
Pad Protective Finish	$\pm 5 P$ (Entek Cu Plus 106A)
Tolerance - Edge To Corner Ball	$\pm 50 \mu \mathrm{~m}$
Solder Ball Side Coplanarity	60 seconds
Maximum Dwell Time Above Liquidous	$260^{\circ} \mathrm{C}$
Maximum Soldering Temperature for Lead-free Devices using a Lead-free Solder Paste	

Figure 5. Recommended Non-Solder Mask Defined Pad Illustration

Figure 6. Lead-free (SnAgCu) Solder Ball Reflow Profile

Mechanical Details

CM1450-06 CSP Mechanical Specifications

The CM1450-06CS/CP is supplied in a custom Chip Scale Package (CSP). Dimensions are presented below. For complete information, see the California Micro Devices CSP Package Information document.

PACKAGE DIMENSIONS						
Package		Custom CSP				
Bumps		15				
Dim	Millimeters		Inches			
	Min	Nom	Max	Min	Nom	Max
A1	2.961	3.006	3.051	0.1166	0.1183	0.1201
A2	1.331	1.376	1.421	0.0524	0.0542	0.0559
B1	0.495	0.500	0.505	0.0195	0.0197	0.0199
B2	0.245	0.250	0.255	0.0096	0.0098	0.0100
B3	0.430	0.435	0.440	0.0169	0.0171	0.0173
B4	0.430	0.435	0.440	0.0169	0.0171	0.0173
C1	0.203	0.253	0.303	0.0080	0.0100	0.0119
C2	0.203	0.253	0.303	0.0080	0.0100	0.0119
D1	0.575	0.644	0.714	0.0226	0.0254	0.0281
D2	0.368	0.419	0.470	0.0145	0.0165	0.0185
\# per tape and			3500 pieces			
reel						
	Controlling dimension: millimeters					

Package Dimensions for CM1450-06CS/CP Chip Scale Package

CM1450

CSP Tape and Reel Specifications

PART NUMBER	CHIP SIZE (mm)	POCKET SIZE (mm) $\mathbf{B}_{0} \mathbf{X ~ A}_{0} \mathbf{X} \mathbf{K}_{0}$	TAPE WIDTH W	REEL DIAMETER	QTY PER REEL	\mathbf{P}_{0}	\mathbf{P}_{1}
CM1450-06	$3.006 \times 1.376 \times$ 0.644	$3.10 \times 1.45 \times 0.74$	8 mm	$178 \mathrm{~mm}\left(7{ }^{\prime \prime}\right)$	3500	4 mm	4 mm

Figure 14. Tape and Reel Mechanical Data

Mechanical Details (cont'd)

CM1450-08 Mechanical Specifications

The package dimensions for the CM1450-08CS/CP are presented below.

PACKAGE DIMENSIONS						
Package		Custom CSP				
Bumps		20				
Dim	Millimeters		Inches			
	Min	Nom	Max	Min	Nom	Max
A1	3.961	4.006	4.051	0.1559	0.1577	0.1595
A2	1.331	1.376	1.421	0.0524	0.0542	0.0559
B1	0.495	0.500	0.505	0.0195	0.0197	0.0199
B2	0.245	0.250	0.255	0.0096	0.0098	0.0100
B3	0.430	0.435	0.440	0.0169	0.0171	0.0173
B4	0.430	0.435	0.440	0.0169	0.0171	0.0173
C1	0.203	0.253	0.303	0.0080	0.0100	0.0119
C2	0.203	0.253	0.303	0.0080	0.0100	0.0119
D1	0.575	0.644	0.714	0.0226	0.0254	0.0281
D2	0.368	0.419	0.470	0.0145	0.0165	0.0185
\# per tape and			3500 pieces			
reel						
	Controlling dimension: millimeters					

Package Dimensions for CM1450-08CS/CP Chip Scale Package

CM1450

CSP Tape and Reel Specifications

PART NUMBER	CHIP SIZE (mm)	$\begin{gathered} \text { POCKET SIZE (mm) } \\ \mathbf{B}_{0} \mathbf{X} \mathbf{A}_{0} \mathbf{X} \mathbf{K}_{0} \\ \hline \end{gathered}$	TAPE WIDTH W	REEL DIAMETER	QTY PER REEL	P_{0}	P_{1}
CM1450-08	$4.006 \times 1.376 \times 0.644$	4.11 X 1.57×0.76	12 mm	330 mm (13")	3500	4 mm	4mm

Figure 15. Tape and Reel Mechanical Data

ON Semiconductor and ©are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLI CATION ORDERING I NFORMATION

LITERATURE FULFILLMENT:	N. American Technical Support: 800-282-9855	ON Semiconductor Website: www. onsemi. com
Literature Distribution Center for ON Semiconductor	Toll Free USA/Canada	
P.O. Box 5163, Denver, Colorado 80217 USA	Europe, Middle East and Africa Technical	Order Literature:http://www.onsemi.com/orderlit
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada	Support:	
F ax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemicom	Phone: 421337902910 Japan Customer Focus Center	For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

