

Power Management, Dual Transistors

NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network

EMF5XV6T5

Features

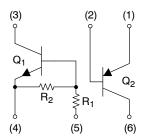
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- These are Pb-Free Devices

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
$\mathbf{Q_1}$ (T _A = 25°C unless otherwise noted, common for Q ₁ and Q ₂)				
Collector-Base Voltage	V _{CBO}	50	Vdc	
Collector-Emitter Voltage	V_{CEO}	50	Vdc	
Collector Current	I _C	100	mAdc	
Electrostatic Discharge	ESD	HBM Class 1 MM Class B		

$Q_2 (T_A = 25^{\circ}C)$

Collector-Emitter Voltage	V_{CEO}	-12	Vdc
Collector-Base Voltage	V_{CBO}	-15	Vdc
Emitter-Base Voltage	V _{EBO}	-6.0	Vdc
Collector Current - Peak - Continuous	I _C	-1.0 (Note 1) -0.5	Adc
Electrostatic Discharge	ESD	HBM Class 3B MM Class C	


THERMAL CHARACTERISTICS

THE HIMAE OHAHAOTEHIOTO			
Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	P _D	357 (Note 2) 2.9 (Note 2)	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	350 (Note 2)	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	P _D	500 (Note 2) 4.0 (Note 2)	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	250 (Note 2)	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1

- 1. Single pulse 1.0 ms.
- 2. FR-4 @ Minimum Pad.

SOT-563 CASE 463A PLASTIC

MARKING DIAGRAM

UY = Specific Device Code

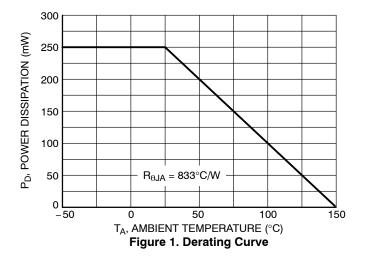
M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
EMF5XV6T5G	SOT-563 (Pb-Free)	8000/Tape & Reel
EMF5XV6T1G	SOT-563 (Pb-Free)	4000/Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, common for Q₁ and Q₂)

Characteristic		Symbol	Min	Тур	Max	Unit
Q ₁ OFF CHARACTERISTICS						
Collector-Base Cutoff Current	$(V_{CB} = 50 \text{ V}, I_{E} = 0)$	I _{CBO}	-	_	100	nAdc
Collector-Emitter Cutoff Current	$(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	ı	_	500	nAdc
Emitter-Base Cutoff Current	$(V_{EB} = 6.0 \text{ V}, I_{C} = 0)$	I _{EBO}	-	-	0.1	mAdd
Collector-Base Breakdown Voltage	$(I_C = 10 \mu A, I_E = 0)$	V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Not	$(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	-	-	Vdc
ON CHARACTERISTICS (Note 3)						
DC Current Gain	$(V_{CE} = 10 \text{ V}, I_{C} = 5.0 \text{ mA})$	h _{FE}	80	140	-	
Collector-Emitter Saturation Voltage	$(I_C = 10 \text{ mA}, I_B = 0.3 \text{ mA})$	V _{CE(sat)}	1	-	0.25	Vdc
Output Voltage (on)	$(V_{CC} = 5.0 \text{ V}, V_B = 3.5 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OL}	1	-	0.2	Vdc
Output Voltage (off)	$(V_{CC} = 5.0 \text{ V}, V_B = 0.5 \text{ V}, R_L = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	_	-	Vdc
Input Resistor		R1	32.9	47	61.1	kΩ
Resistor Ratio		R1/R2	0.8	1.0	1.2	
Q ₂ OFF CHARACTERISTICS						
Collector - Emitter Breakdown Voltage	$(I_C = -10 \text{ mAdc}, I_B = 0)$	$V_{(BR)CEO}$	-12	_	-	Vdc
Collector - Base Breakdown Voltage	$(I_C = -0.1 \text{ mAdc}, I_E = 0)$	$V_{(BR)CBO}$	-15	-	-	Vdc
Emitter – Base Breakdown Voltage	$(I_E = -0.1 \text{ mAdc}, I_C = 0)$	$V_{(BR)EBO}$	-6.0	-	-	Vdc
Collector Cutoff Current	$(V_{CB} = -15 \text{ Vdc}, I_{E} = 0)$	I _{CBO}	1	_	-0.1	μAdc
Emitter Cutoff Current	$(V_{EB} = -6.0 \text{ Vdc})$	I _{EBO}	1	-	-0.1	μAdc
ON CHARACTERISTICS						
DC Current Gain (Note 4)	$(I_C = -10 \text{ mA}, V_{CE} = -2.0 \text{ V})$	h _{FE}	270	_	680	
Collector - Emitter Saturation Voltage (Not	e 4) $(I_C = -200 \text{ mA}, I_B = -10 \text{ mA})$	V _{CE(sat)}	-	-	-250	mV
Base - Emitter Saturation Voltage (Note 4)	$(I_C = -150 \text{ mA}, I_B = -20 \text{ mA})$	V _{BE(sat)}	-	-0.81	-0.90	V
Base - Emitter Turn-on Voltage (Note 4)	$(I_C = -150 \text{ mA}, V_{CE} = -3.0 \text{ V})$	V _{BE(on)}	-	-0.81	-0.875	V
Input Capacitance	$(V_{EB} = 0 \text{ V}, f = 1.0 \text{ MHz})$	C _{ibo}	-	52	-	pF
Output Capacitance	$(V_{CB} = 0 \text{ V}, f = 1.0 \text{ MHz})$	C _{obo}	-	30	-	pF
Turn-On Time (I _E	$_{\rm BI}$ = -50 mA, $I_{\rm C}$ = -500 mA, $R_{\rm L}$ = 3.0 Ω)	t _{on}	-	50	-	ns
	<u>_</u>	1			1	1

Turn-Off Time

Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%.
 Pulsed Condition: Pulse Width = 300 μsec, Duty Cycle ≤ 2%.

(I_{B1} = I_{B2} = -50 mA, I_{C} = -500 mA, R_{L} = 3.0 $\Omega)$

 t_{off}

80

ns

TYPICAL ELECTRICAL CHARACTERISTICS FOR Q1

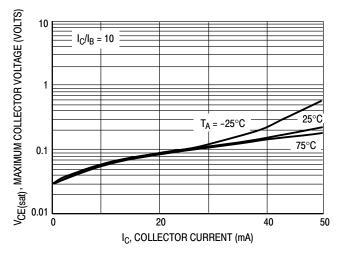


Figure 2. $V_{\text{CE(sat)}}$ versus I_{C}

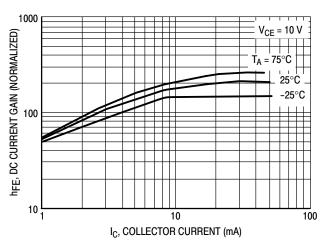


Figure 3. DC Current Gain

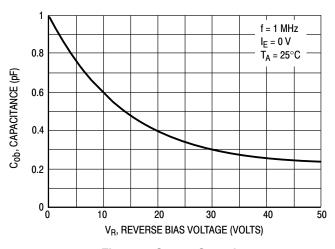


Figure 4. Output Capacitance

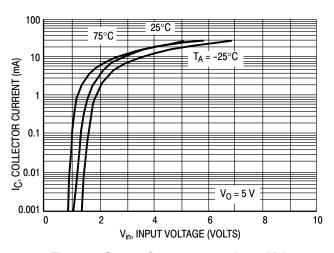


Figure 5. Output Current versus Input Voltage

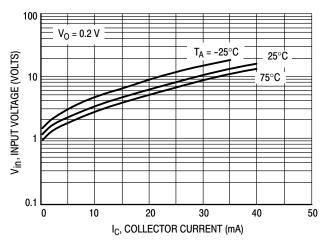


Figure 6. Input Voltage versus Output Current

TYPICAL ELECTRICAL CHARACTERISTICS FOR Q2

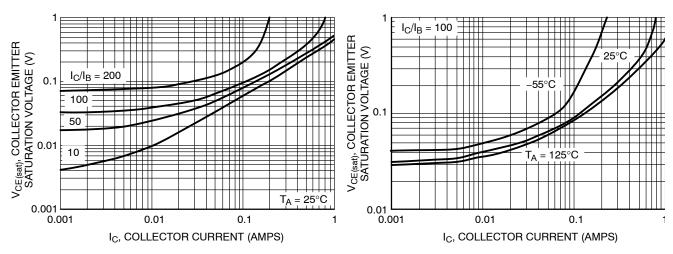


Figure 7. Collector Emitter Saturation Voltage vs. Collector Current

Figure 8. Collector Emitter Saturation Voltage vs. Collector Current

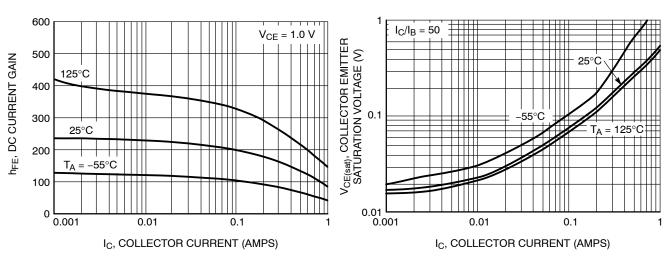


Figure 9. DC Current Gain

Figure 10. Collector Emitter Saturation Voltage vs. Collector Current

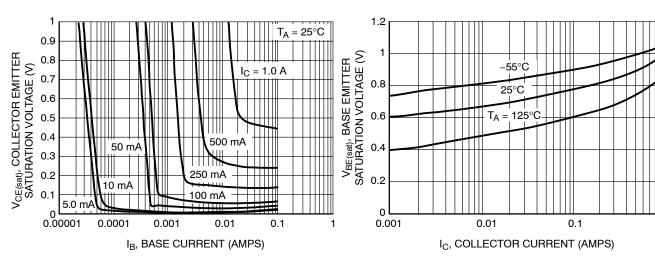
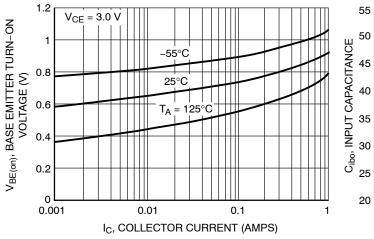



Figure 11. Collector Emitter Saturation Voltage vs Base Current

Figure 12. Base Emitter Saturation Voltage vs.
Collector Current

0 1 2 3 4 5 6 VEB, EMITTER BASE VOLTAGE

Figure 13. Base Emitter Turn-On Voltage vs. Collector Current

Figure 14. Input Capacitance

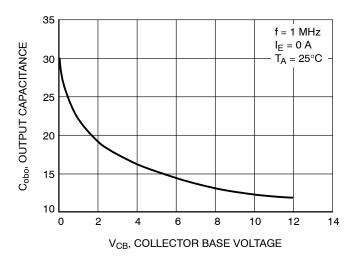
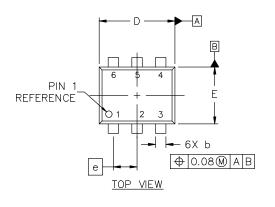
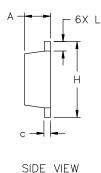
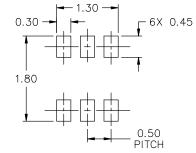


Figure 15. Output Capacitance




SOT-563-6 1.60x1.20x0.55, 0.50P CASE 463A **ISSUE J**

DATE 15 FEB 2024


NOTES:

- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM	MILLIMETERS		:RS
ויונע	MIN.	N□M.	MAX.
А	0.50	0.55	0.60
b	0.17	0.22	0.27
C	0.08	0.13	0.18
D	1.50	1.60	1.70
E	1.10	1.20	1.30
е	0.50 BSC		
Н	1.50	1.60	1.70
L	0.10	0.20	0.30

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. EMITTER 1	PIN 1. EMITTER 1	PIN 1. CATHODE 1
2. BASE 1	2. EMITTER 2	2. CATHODE 1
3. COLLECTOR 2	3. BASE 2	3. ANODE/ANODE 2
4. EMITTER 2	4. COLLECTOR 2	4. CATHODE 2
5. BASE 2	5. BASE 1	5. CATHODE 2
6. COLLECTOR 1	6. COLLECTOR 1	6. AN□DE/AN□DE 1

STYLE 6: PIN 1. CATHODE 2. ANODE

SOT-563-6 1.60x1.20x0.55, 0.50P

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

3. CATHODE 4. CATHODE 5. CATHODE

RECOMMENDED	MOLINITING	FOOTPRINT*
KECOMIMENDED	MOONTING	LOO INKINI.

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

STYLE 7:	STYLE 9: PIN 1. SDURCE 1 2. GATE 1 3. DRAIN 2 4. SDURCE 2 5. GATE 2 6. DRAIN 1
----------	--

STYLE 5:

PIN 1. CATHODE

2. CATHODE

3. ANDDE 4. ANDDE 5. CATHODE

GENERIC MARKING DIAGRAM*

XX = Specific Device Code M = Month Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

STYLE 10:	STYLE 11:
PIN 1. CATHODE 1	PIN 1. EMITTER 2
2. N/C	2. BASE 2
3. CATHODE 2	3. COLLECTOR 1
4. AN□DE 2	4. EMITTER 1
5. N/C	5. BASE 1
6. AN□DE 1	6. COLLECTOR 2

STYLE 4: PIN 1. COLLECTOR

2. COLLECTOR

3. BASE
4. EMITTER
5. COLLECTOR

COLLECTOR

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

DESCRIPTION:

PAGE 1 OF 1

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales