ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

FAN54110 USB-Compatible Single-Cell Li-Ion Linear Charger with DBP

Features

Fully Integrated, High-Efficiency Charger for Single-Cell Li-Ion and Li-Polymer Battery Packs

Charge Voltage Accuracy:

±1% from -30 to 85°C

±0.5% at 25°C

+0/-10% Charge Current Regulation Accuracy

28 V Absolute Maximum Input Voltage

1 A Maximum Charge Current

Support for Dead Battery Provision (DBP) of USB Battery Charging Specification 1.2 Programmable through I²C Interface with Fast Mode (400 kHz) Compatibility

- Input Current
- Fast-Charge / Termination Current
- Charger Voltage

Safety Timer with Reset Control

Weak Input Sources Accommodated by Reducing Charging Current to Maintain Minimum V_{BUS} Voltage

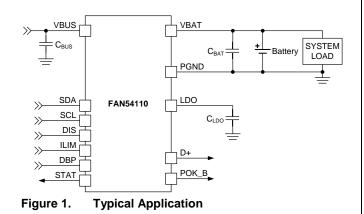
Low Reverse Leakage to Prevent Battery Drain to VBUS

Applications

Smart Phones Tablets Portable Media Players Li Ion Powered Devices

Description

The FAN54110 is a USB-compatible single-cell, linear Li-Ion charger with support for Dead Battery Provision (DBP).


The device employs Over-Voltage Protection (OVP) circuitry to protect the device, load, and battery. The maximum charge current is rated at 1 A and can be programmed from 100 mA to 1 A through the I²C interface, optimizing charging for various battery sizes.

Dynamic Input Voltage Control ensures weak power sources can be used to power the FAN54110 without collapsing to an unusable input voltage for charging.

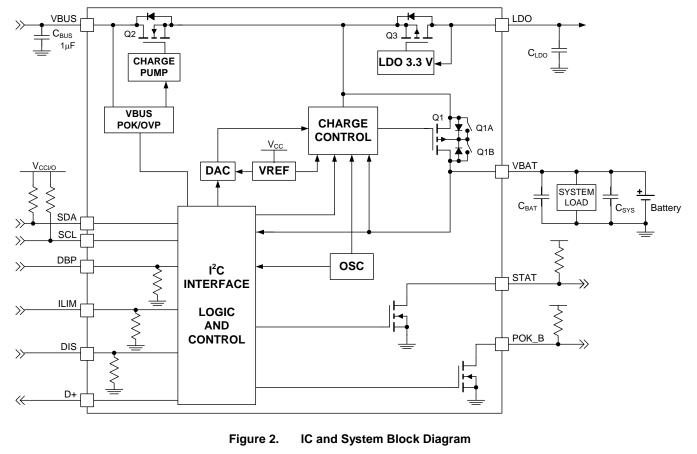
Open-drain status pins, STAT and POK_B, provide a status of charging and input power. The STAT pin also notifies the system processor when an I^2C interrupt occurs so the processor can take action based on the interrupt.

The FAN54110 conforms to the constraints of the Dead Battery Provision within the BC1.2 specification, including a 30-minute timer that cannot exceed 45 minutes.

The FAN54110 is designed to be stable with space-saving ceramic capacitors. The FAN54110 is available in a 15-bump, 0.4 mm pitch, WLCSP package.

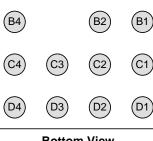
Part Number	PN Reg00h[4:3]	Temperature Range	Package	Packing Method
FAN54110UCX	00	-40°C to 85°C	D°C to 85°C 15-Bump, Wafer-Level Chip-Scale (WLCSP), 0.4 mm Pitch	

Recommended External Components


Component	Description	Vendor	Parameter	Min.	Typ.(1)	Unit
C _{BUS}	1.0 μF, 10%, 25 V, X5R, 0603	Murata GRM188R61E105K TDK C1608X5R1E105M	С	0.5	1.0	μF
C _{BAT} ⁽²⁾	4.7 μF, 10%, 6.3 V, X5R, 0603	Murata GRM188R60J475K TDK C1608X5R0J475K	С	2.0	4.7	μF
Cldo	1.0 μF, 10%, 6.3 V, X5R, 0402	Murata GRM155R60J105M	С	0.4	1.0	μF

Notes:

1. Does not reflect effects of bias, tolerance, and temperature.


 C_{BAT} is placed as close to the charger IC as possible. A minimum requirement of 30 μF distributed system capacitance (C_{SYS}) is parallel with C_{BAT}, but can be located further from the IC.

Block Diagram

SDA	
(A4)	
<u></u>	
STAT	
B4	
9	
LDO	
C4	
<u> </u>	
ILIM	
D4	
S.	
	1

Top \	/iew
-------	------

(A3)

(A2)

(A1)

(A4)

Bottom View

Pin Definitions

D+

(A1)

(B1)

(C1)

DIS

(D1)

DBP

(A2)

(B2)

(C2) POK_B

(D2)

VBUS

PGND

SCL

(A3)

VBAT

(C3)

(D3)

Pin #	Name	Description
A1	D+	Connect to the USB connector D+ pin
AI	D+	Charger IC sources 0.6 V in CHARGE state when DBP is LOW. Otherwise, this pin is 3-state.
A2	DBP	Dead Battery Provision Disable
AZ	DDF	Pull HIGH to disable charger D+ output. Internal pull-down resistor.
A3	SCL	I ² C Interface Serial Clock
A4	SDA	I ² C Interface Serial Data
D1 D2	VBUS	Charger Input Voltage
B1, B2	VDU3	Bypass with a 1 μ F capacitor directly to PGND.
	Status / Interrupt	
B4	STAT	Open-drain output indicating charge status. The IC pulls this pin LOW when charge is in process. High
		impedance when charging is done or charger is disabled. Also used as system interrupt. 128 μs pulse and then high impedance indicates to the system a fault has occurred.
C1, C2	PGND	Power Ground
01, 02	FGND	Power return for gate drive and power transistors.
C4	LDO	3.3 V LDO
64	LDO	3.3 V regulator output.
D1	DIS	Active-High Disable
DI	015	When pulled HIGH, the charger is disabled. Internal pull-down resistor.
		VBUS Power-OK Monitor
D2	POK_B	Open-drain output that is pulled LOW when V_{BUS} is greater than the V_{BUS} validation threshold and lower than V_{BUS} OVP. High impedance when outside this range.
		Battery Voltage
C3, D3	VBAT	Connect to the positive (+) terminal of the battery pack. Bypass locally with a 4.7 μF capacitor to PGND.
D4	11.15.4	Input Current Limit
D4	ILIM	This pin sets the input current limit for t _{30MIN} charging. Internal pull-down resistor.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameter	Min.	Max.	Unit
V _{BUS}	Voltage on VBUS	Continuous	-1.2	28.0	V
VBAT	oltage on VBAT		-0.3	6.5	V
Vo	Voltage on Other Pins		-0.3	(3)	V
	Electrostatic Discharge Protection Level	Human Body Model per ANSI/ESDA/JEDEC JS-001-2012 (All Pins)	2000		
ESD		Charged Device Model per JESD22-C101 (All Pins)	1500		V
		IEC 61000-4-2 System (VBUS and D+ Pins)	8000		
LU	Latch Up	JESD78 – Class 1, 25°C	±100		mA
TJ	Junction Temperature	Junction Temperature		+150	°C
T_{STG}	Storage Temperature	Storage Temperature		+150	°C
ΤL	Lead Soldering Tempera	ature, 10 Seconds		+260	°C

Note:

3. Lesser of 6.5 V or V_{BAT} + 0.3 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to absolute maximum ratings.

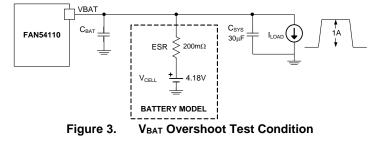
Symbol	Parameter	Min.	Max.	Unit
Vin	Supply Voltage	4	6	V
T _A	Ambient Temperature	-30	+85	°C
TJ	Junction Temperature	-30	+125	°C

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(max)}$ at a given ambient temperature T_A . For measured data, see the Evaluation Board Measured θ JA table.

Symbol	Parameter	Typical	Unit
θја	Junction-to-Ambient Thermal Resistance	60	°C/W
θјв	Junction-to-PCB Thermal Resistance	20	°C/W

Electrical Specifications


Unless otherwise specified: circuit of Figure 2, recommended operating temperature range for T_J and T_A , V_{BUS} =5.0 V, DIS=0 (Charger Mode operation), SCL, SDA=0 or 1.8 V; typical values are for T_J =25°C.

Symbol	Parameter	Condit	tions	Min.	Тур.	Max.	Unit
Power Su	pplies	1			1	1	
VIN(MIN)1	VBUS Input Voltage Rising	To Initiate and Pass VBUS Validation		4.18	4.40	4.65	V
VIN(MIN)2	Minimum VBUS during Charge	VBUS Regulation Loop is	s Off	2.95	3.10	3.35	V
tvbus_vali	VBUS Validation Time				32		ms
$V_{\text{BUS}_{\text{REF}}}$	V _{BUS} Regulation Loop Threshold	Relative to VBUS_REF S	Setting	-5		+5	%
Ivbus	V _{BUS} Current	DIS=1			890	1,000	μA
IDIS	VBUS Discharge Current	VBUS Removal or Valida	ation	40	63	90	mA
	Battery Discharge Current during	V _{BAT} =4. 2 V, VBUS=Ope No I ² C Traffic, -30°C < T			5	10	٥
I _{BAT}	SLEEP State	V _{BAT} =4. 2 V, VBUS=Open, SDA=SCL=0 V, -30°C < T _J < 85°C			3	8	μA
IBUS_LKG	VBAT to VBUS Leakage Current	V _{BAT} =4. 2 V, V _{BUS} =0 V, -30°C < T _J < 85°C			<1	2	μA
Charger V	/oltage Regulation						
(Charge Voltage Range		3.38		4.44	V	
	Charge Voltage Accuracy	V _{OREG} =4. 2 V	TJ=25°C	-0.5		+0.5	%
V			-30°C < T」 < 85°C	-1		+1	
V_{OREG}		3.38 V < V _{OREG} < 4.44 V	TJ=25°C	-1		+1	
			-30°C < T」 < 85°C	-1.5		-1.5	
	VBAT Overshoot Pulsed Load ⁽⁴⁾	See V _{BAT} Overshoot Test			2	10	mV
Fast Cha	rging Current Regulation						
	Output Charge Current Range			100		1,000	mA
IOCHRG	Charge Current Accuracy	I _{осняд} ≥ 350 mA		-10	-5	0	%
	(measured at V _{BUS} , includes I_{CHRG} + I_{REG})	І _{осняд} < 350 mA		-15	-7	0	
Logic Lev	/els: DIS, SDA, SCL, ILIM, DBP						
VIH	High-Level Input Voltage			1.05			V
VIL	Low-Level Input Voltage					0.4	V
lin	Input Bias Current	Input Tied to GND or Gre V _{BUS}	eater of V _{BAT} or Valid		0.01	1.00	μA
Rpd	ILIM, DBP, DIS Pull-Down Resistance			0.6	0.9	1.4	MΩ

VBAT Overshoot Test

In the figure below, IocHarge=1 A (1111), Voreg=4.2 V. ILOAD tr=tF=1 μ s. Charge current prior to load transient= $\frac{20mV}{200mC} = 100mA$

Overshoot is measured as the peak voltage above V_{BAT} level prior to the load transient application. C_{SYS} represents the distributed system capacitance across the VBAT terminals and is assumed to be a minimum of 30 μ F.

Electrical Specifications

Unless otherwise specified: circuit of Figure 2, recommended operating temperature range for T_J and T_A , V_{BUS} =5.0 V, DIS=0 (Charger Mode operation), SCL, SDA=0 or 1.8 V; typical values are for T_J =25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Charge Te	rmination Detection					
	Termination Current Range	VBAT > VOREG - VRCH, VBUS > VBUS_REF	20		170	mA
ITERM		I _{теrм} > 80 mA	-10		+10	0/
	Termination Current Accuracy	I _{теrм} <u><</u> 80 mA	-20		+20	%
Battery Re	charge Threshold					
V_{RCH}	Recharge Threshold	V_{BAT} Falling by V_{RCH} below V_{OREG} Threshold		100		mV
3. 3 V Line	ar Regulator					
V_{REG}	3.3 V Regulator Output	I _{REG} from 0 to 40 mA	3.10	3.30	3.50	V
DBP Outpu	ut					
VDBP_SRC	Voltage on D+ pin	DBP=0, ILOAD on D+ from 0 to 250 µA	0.51	0.60	0.69	V
IDBP_OFF	Leakage Current	DBP=1, V _{D+} from 0 to 3. 6 V	-1		+1	μA
STAT / PO	K_B Output					
Vol	STAT / POK_B Output Low	I=10 mA			0.4	V
Іон	STAT / POK_B Leakage Current	V=5 V			1	μA
Battery De	tection					
IDETECT	Battery Detection Current before Charge Done (Sink Current)	Begins after Termination Detected		-1		mA
t DETECT	Battery Detection Time			262		ms
Power Swi	tches (see Error! Reference source	e not found.)				
Q1 R _{DS(ON)}	Q1 On Resistance			175	260	mΩ
Q2 RDS(ON)	Q2 On Resistance			110	170	mΩ
Protection	and Timers					L
	VBUS OVP Accuracy	VBUS Rising	-7		+7	%
VBUSOVP	Hysteresis	V _{BUS} Falling		100		mV
	Battery Short-Circuit Threshold	V _{BAT} Rising	2.10	2.27	2.40	V
VSHORT	Hysteresis	V _{BAT} Falling		120		mV
ISHORT	Linear Charging Current	V _{BAT} < V _{SHORT}	85	93	100	mA
ILIM(PTM)	Production Test Mode Current Limit		2.2			А
_	Thermal Shutdown Threshold ⁽⁴⁾	TJ Rising	130	145	160	
TSHUTDWN	Re-Enable Threshold ⁽⁴⁾	TJ Falling		TCF		°C
T _{CF}	Thermal Regulation Accuracy ⁽⁴⁾	Relative to T _{CF} Setting	-10		+10	°C
t328	32-Second Timer		20.5	24.3	28.0	s
tзомім	30-Minute Timer		30	38	45	min
tosc	125 kHz Oscillator Tolerance	Timing in all Sequencing Diagrams	-15		15	%

Note:

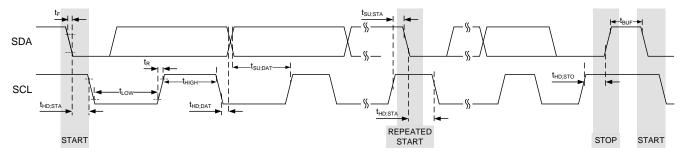
4. Guaranteed by design; not tested in production.

6

I²C Timing Specifications

Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		Standard Mode			100	
		Fast Mode			400	
f scl	SCL Clock Frequency	High-Speed Mode, C _B ≤ 100 pF			3400	kHz
		High-Speed Mode, C _B ≤ 400 pF			1700	
	Bus-Free Time between STOP	Standard Mode		4.7		
t BUF	and START Conditions	Fast Mode		1.3		μS
		Standard Mode		4		μS
thd;sta	START or Repeated START Hold Time	Fast Mode		600		
		High-Speed Mode		160		ns
		Standard Mode		4.7		
		Fast Mode		1.3		μS
tLOW	SCL LOW Period	High-Speed Mode, C _B ≤ 100 pF		160		
		High-Speed Mode, C _B ≤ 400 pF		320		ns
		Standard Mode		4		μS
tнigн SCL	SCL HIGH Period	Fast Mode		600		ns
		High-Speed Mode, C _B <u>≤</u> 100 pF		60		
		High-Speed Mode, C _B ≤ 400 pF		120		
		Standard Mode		4.7		μs
tsu;sta	Repeated START Setup Time	Fast Mode		600		pro
		High-Speed Mode		160		ns
		Standard Mode		250		
tsu;dat	Data Setup Time	Fast Mode		100		ns
		High-Speed Mode		10		
		Standard Mode	0		3.45	μS
		Fast Mode	0		900	μο
$t_{\text{HD};\text{DAT}}$	Data Hold Time	High-Speed Mode, $C_B < 100 \text{ pF}$	0		70	ns
		High-Speed Mode, $C_B \leq 400 \text{ pF}$	0		150	
		Standard Mode	-).1C _в	1000	<u> </u>
		Fast Mode).1Cв	300	
trcl	SCL Rise Time	High-Speed Mode, $C_B \le 100 \text{ pF}$		10	80	ns
		High-Speed Mode, $C_B \leq 400 \text{ pF}$		20	160	
		Standard Mode	20+0	<u>го</u>).1Св	300	
		Fast Mode).1C _B	300	
t _{FCL}	SCL Fall Time	High-Speed Mode, $C_{B} \leq 100 \text{ pF}$		10	40	ns
		High-Speed Mode, $C_B \le 400 \text{ pF}$		20	80	
		Standard Mode	20+0	<u>го</u>).1Св	1000	
t rda	SDA Rise Time Rise Time of SCL after a	Fast Mode).1Св	300	
	Repeated START Condition	High-Speed Mode, $C_{B} \leq 100 \text{ pF}$	2010	10	80	ns
IRCL1	and after ACK Bit					


www.onsemi.com

I²C Timing Specifications

Guaranteed by design.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		Standard Mode	20+0	.1Св	300		
		Fast Mode	20+0).1C _в	300		
t _{FDA}	SDA Fall Time	High-Speed Mode, С _{в <} 100 pF		10	80	ns	
		High-Speed Mode, C _B <u>≤</u> 400 pF		20	160	1	
		Standard Mode		4		μS	
tsu;sto	Stop Condition Setup Time	Fast Mode		600			
		High-Speed Mode		160		ns	
Св	Capacitive Load for SDA, SCL				400	pF	

Timing Diagram

FAN54110 — USB-Compatible Single-Cell Li-Ion Charger with DBP

Typical Characteristics

Unless otherwise specified; circuit of Figure 2, Voreg=4.2 V, VBUS=5.0 V, and TA=25°C.

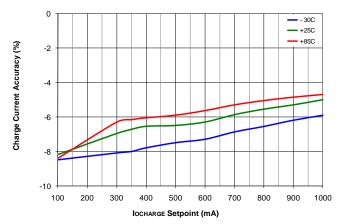


Figure 5. IOCHRG Accuracy Over-Temperature, 3.7 VBAT

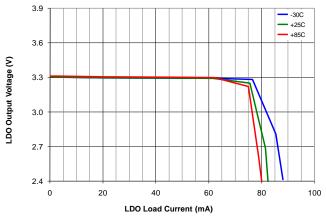
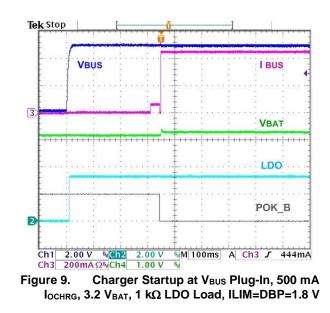
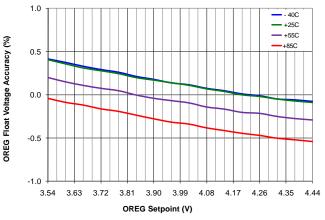
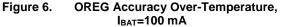





Figure 7. LDO Load Regulation, VOREG=VBAT=4.2 V

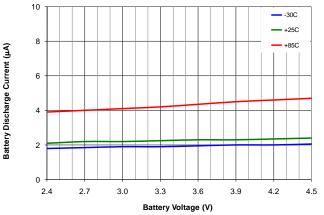
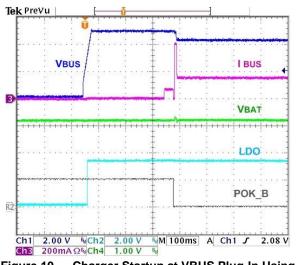



Figure 8. HZ / Sleep Mode Battery Discharge Current, V_{BUS} Open, DIS=SDA=SCL=0 V

Typical Characteristics

Unless otherwise specified; circuit of Figure 2, V_{OREG}=4.2 V, V_{BUS}=5.0 V, and T_A=25°C.

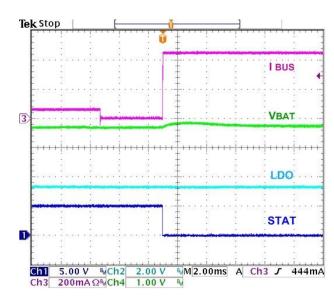
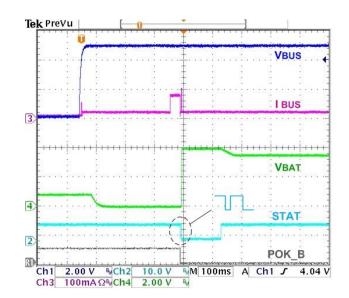



Figure 11. Charger Startup Using HZ Bit Reset, 3.7 V_{BAT} , 500 mA I_{OCHRG}, 1 k Ω LDO Load, ILIM=DBP=1.8 V

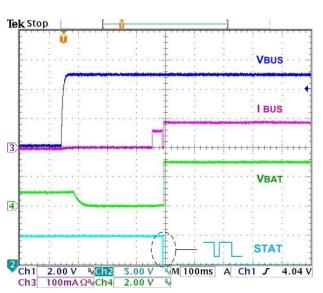


Figure 12. Charger Startup at V_{BUS} Plug-In with Dead Battery (Protection Switch Open), 1 kΩ LDO Load, ILIM=DBP=0 V

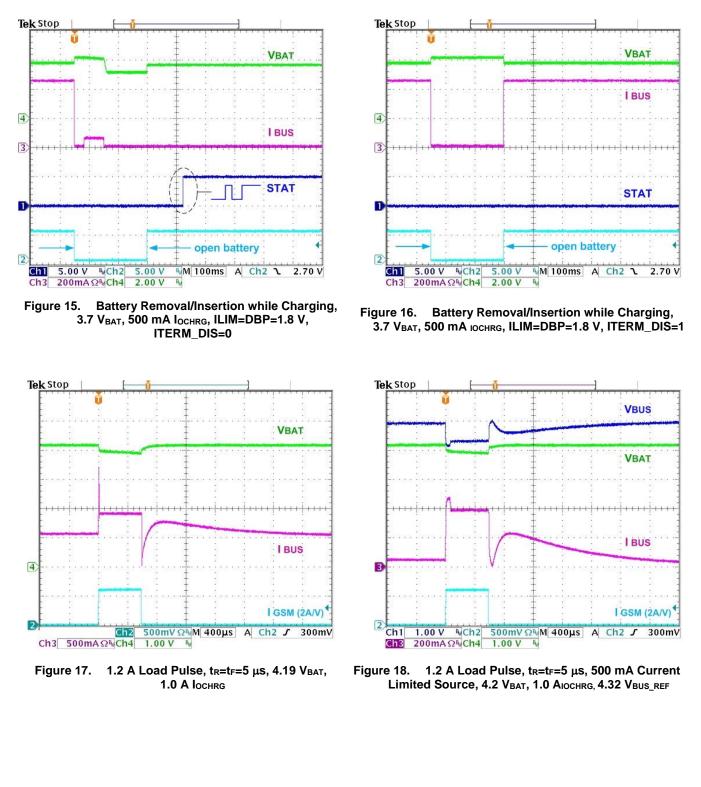



Figure 14. VBUS OVP Response while Charging, 3.7 V_{BAT}, 500 mA I_{OCHRG}, 1 kΩ LDO Load, ILIM=DBP=1.8 V

Typical Characteristics

Unless otherwise specified; circuit of Figure 2, Voreg=4.2 V, VBUS=5.0 V, and TA=25°C.

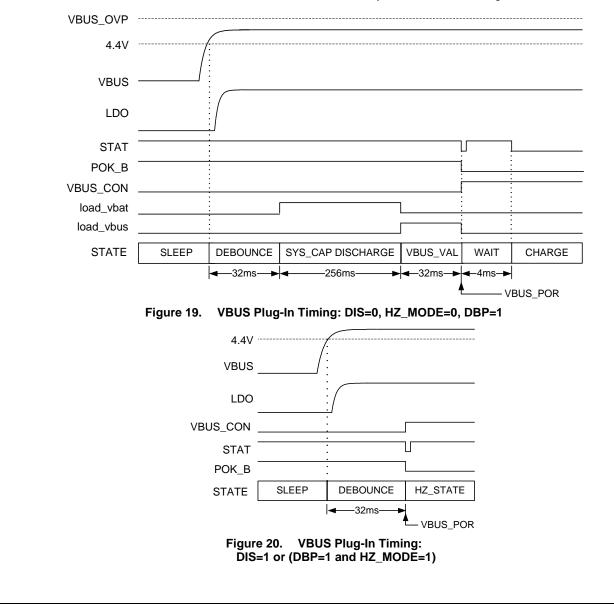
Basic Operation

The FAN54110 is a USB-compatible single-cell Li-lon charger with support for Dead Battery Provision (DBP) and a maximum charge current rated at 1 A.

The FAN54110 conforms to all the requirements for the DBP within the BC1. 2 specifications, including a 30-minute timer that cannot exceed 45 minutes.

The FAN54110 is designed to be stable with space-saving ceramic capacitors and is available in a 15-bump, 0.4 mm pitch, WLCSP.

Charger Circuit Details


VBUS Insertion

When the IC detects that V_{BUS} has risen above V_{IN(MIN)1}, adapter validation and battery voltage detection will occur before charging begins. To pass validation, V_{BUS} must remain above V_{IN(MIN)1} and below V_{BUSOVP} for t_{VBUS_VALID} before the IC initiates charging. Refer to Figure 20 and Figure 21 for details.

If V_{BUS} is validated, the POK_B pin pulls LOW and an interrupt is issued to indicate to the system that VBUS is connected. This point is considered to be VBUS_POR.

If VBUS fails validation, the POK_B pin remains HIGH and an interrupt is issued. Re-validation is attempted every two seconds.

Setting the HZ_MODE bit or DIS pin prevents validation from occurring after VBUS rises above $V_{IN(MIN)1}$, but, VBUS validation will be performed prior to entering Charge State from any state where the charger is off.

VBUS POR and DBP Charging

If the DBP pin is HIGH at VBUS_POR, the IC operates in accordance with its I²C register settings and starts the t_{32s} timer when charging begins. This is the normal operating mode for the FAN54110.

If the DBP pin is LOW at VBUS_POR or the DBP pin transitions from HIGH to LOW when VBUS is valid, the FAN54110:

- Resets its registers to default values
- Charges with its charge current limit set by the state of the ILIM pin:
 - ILIM= LOW, I_{OCHRG}=100 mA
 - ILIM= HIGH, I_{OCHRG}=350 mA
- Starts the t_{30MIN} timer
- Sources 0.6 V to the D+ pin

BC1.2 and USB 2.0 allow a portable device (defined as a device with a battery) with a dead battery to take a maximum of 100 mA from the USB VBUS line for a maximum of 45 minutes as long as the portable device forces the D+ line to 0.6 V typical.

Once DBP transitions from LOW to HIGH, D+ is three-stated and charge parameters may be programmed by the host. Charge current remains controlled by the state of the ILIM pin and the t_{30MIN} timer continues running until the first I²C write occurs; at which time, charge current is controlled by the IocHARGE (Reg03h[7:4]) bits and the timer changes to t₃₂₅.

The ILIM and DBP pins are internally pulled down and there is typically nothing to force them HIGH at this point due to the processor / system not yet being awake. When the t_{30MIN} timer expires, the FAN54110 removes the 0.6 V from D+ and stops charging. The D+ pin is three-stated when DBP is HIGH.

Battery Absent at VBUS Insertion

Before charging begins, if V_{BAT} is below $V_{\text{SHORT}},$ the FAN54110 will determine whether the battery is absent or present.

To accomplish this, the IC temporarily raises V_{OREG} to 4.0 V after V_{BAT} has risen above V_{SHORT}. If V_{BAT} remains below 3.7 V for more than 128 ms, the battery is present. If V_{BAT} is above 3.7 V after 128 ms, the battery is assumed absent.

If battery absence is detected, all registers are reset to their default values, the NOBAT bit is set, and an interrupt is generated. Also, it is assumed the DBP pin is LOW since the system was without a power source prior to plug in. The FAN54110 will provide power to the system with STAT HIGH in DBP Mode until otherwise instructed through I²C commands. This allows the host processor an opportunity to detect charger type and negotiate with the USB host for higher current.

The IC continues to provide current, provided that:

- a timer (t_{30MIN} or t_{32S}) is running
- HZ_MODE (Reg=01h[6])=0 and DIS=LOW.

The current drawn from VBUS is determined by either the state of ILIM pin or the I_{OCHARGE} programming.

Charging Stages

Figure 21 shows the different charging stages when a battery is present and discharged below 2.25 V.

PRE-CHARGE is when the battery voltage is below V_{SHORT} and a current of I_{SHORT} is used to charge the battery above VSHORT. This stage is typically used to recover a deeply discharge battery with its protection switch open.

CURRENT REGULATION increases charging current considerably above I_{SHORT} to a programmable I_{OCHARGE} (Reg 03h[7:4]) level.

VOLTAGE REGULATION occurs during charging when VBAT reaches VOREG (Reg4[5:0]). The current charging the battery is reduced, limited by the battery's ESR and its internal cell voltage.

- If ITERM_DIS (Reg03h[0])=0, charging current decreases to ITERM (Reg03h[3:0]), where Charge Termination occurs.
- If ITERM_DIS=1 (default configuration), charging will continue past ITERM until current decreases to 0A, where the part will remain in Charge Mode with the t_{32S} timer running.

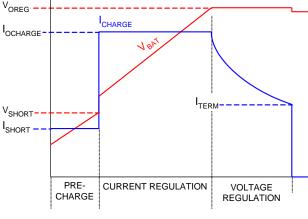


Figure 21. Typical Charge Profile

Charge Termination

During Voltage Regulation, charging continues until the I_{BAT} \leq I_{TERM}. If ITERM_DIS=0, charging stops and the t_{32S} timer continues counting. The STAT pin remains LOW until the IC determines whether the I_{BAT} < I_{TERM} condition was caused by VBUS removal, Battery Removal, or by the battery being fully charged (Charge Termination).

During Charge Termination, the t_{32S} timer will continue running, but, if it expires will not reset all registers until Recharge. Setting the TMR_RST bit (Reg8[7]) during Charge Termination will reset the t_{32S} timer. Refer to the Timers section for more details.

Recharge from Charge Termination

During Charge Termination, if V_{BAT} falls by V_{RCH} below $V_{\text{OREG}},$ charging starts again.

A recharge condition de-bounce time of 60 ms is used to prevent transient battery load currents (such as GSM current pulses) from triggering auto-recharge unnecessarily.

Battery Removal during Charging

When ITERM_DIS=0 and the charge current drops below the ITERM setting, a load current (IDETECT) is placed on V_{BAT} in order to determine if the battery was removed during charging. If the battery is determined to be present, the load is removed, and Charge Done State is entered. If the battery is determined to be absent, the IC enters a fault state, which waits with the charger disabled for two seconds, then restarts the charger validation process.

- If the battery is determined to be present, the load is removed, and Charge Termination occurs.
- If the battery is determined to be absent, charging is disabled, all registers except ITERM_DIS are reset to default values, the NOBAT interrupt bit is set, and the STAT pin rises. After 2s, the charger will restart validation and if the battery is re-inserted, the IC will return to Charge State.

In response to V_{BAT} collapsing, though, the system electronics have likely lowered the DBP pin which will reset all registers. As a result, the ITERM_DIS bit will be reset to 1, which will set the unloaded VBAT pin to output 3.54V (the default V_{OREG} setting) and place the IC in Charge State with the NOBAT bit remaining set until the next VBUS_POR validation.

VBUS Removal and SLEEP

When V_{BUS} falls below either $V_{\text{IN}(\text{MIN})2}$ or V_{BAT} , the IC ceases charging, the POK_B pin sets HIGH, and an interrupt occurs to indicate to the system that VBUS has been removed. The IC then enters the Sleep State.

LDO

The FAN54110 provides a regulated 3.3 V LDO output when a valid V_{BUS} condition exists to power the USB PHY. Regulation occurs within 5 ms of valid V_{BUS} being applied.

LDO load current is derived from V_{BUS} and is subject to the I_{OCHARGE} setting / limit. Available battery charging current is reduced by the LDO load current.

Charger/Battery/System Protections

Timers

There are two timers on the FAN54110; t_{32S} and the t_{30MIN}.

The t_{32S} timer is for normal operation where the DBP pin is HIGH. When charging begins after a VBUS_POR with the DBP pin HIGH, the t_{32S} timer is started. If the t_{32S} timer is allowed to expire, charging ceases and the part will enter the IDLE State where all registers are reset. A write to any register can return the IC to charging. To avoid a t_{32S} timer fault, the host must reset the timer by periodically setting the TMR_RST (Reg08h[7]) bit before it expires.

The $t_{30\text{MIN}}$ timer is for unattended charging. If $V_{\text{BAT}}{<}V_{\text{SHORT}}$ the device is assumed to be dead and the DBP pin is, therefore, LOW. When charging begins after a VBUS_POR with $V_{\text{BAT}}{<}V_{\text{SHORT}}$ and the DBP pin LOW, the $t_{30\text{MIN}}$ timer is started. If the $t_{30\text{MIN}}$ timer is allowed to expire, charging

ceases and the part will enter the IDLE State where all registers are reset. Only a new VBUS_POR will return the IC to charging.

During unattended charging, if the DBP pin transitions from LOW to HIGH (due to the host waking up and controlling the charger):

- 1- If VBAT<VSHORT, the t30MIN timer will continue running.
- 2- If VBAT>VSHORT, the t30MIN timer will continue running until the first I²C write. Then the t30MIN will stop and the t32S timer is started.

VBUS Over-Voltage

The FAN54110 contains programmable Over-Voltage Protection (OVP) on VBUS, ranging from 6.5 V to 8.0 V, as specified in the V_{BUSOVP} (Reg01h[2:1) bits with a default setting of 7 V. If OVP is detected, the FAN54110 terminates charging functionality if charging is active when OVP is detected. The FAN54110 interrupts the host when the OVP event occurs and sets the OVP_FLAG bit.

Dynamic Input Voltage Control (DIVC)

V_{BUS} is typically 5 V +5% / -10%, depending on the charging current. If the FAN54110 is programmed to a higher current than the charger can support, a regulation control actively regulates the charging current to maintain at least 4.32V (typical) on VBUS. This level is controlled via the VBUS_REF (Reg02h[3:2]) bits. The FAN54110 reduces the charging current to ensure V_{BUS} is maintained above the V_{BUS_REF} setting. The DIVC regulation loop is enabled by default and disabled with the VBUS_REG (Reg01h[5]) bit.

If DIVC is disabled, the charging cycle stops when V_{BUS} falls below the V_{BUS} valid falling threshold (V_{INMIN2}) or below V_{BAT}. Charging remains stopped until V_{BUS} rises above the rising V_{BUS} valid threshold (V_{INMIN1}) and stays above this threshold.

Thermal Regulation and Shutdown

The thermal regulation loop is enabled if the junction temperature reaches the threshold defined by the T_{CF} (Reg02h[5:4]) bits. When T_{CF} is reached, the FAN54110 reduces the charging current to 90 mA until the junction temperature falls below T_{CF} . Charge current is then incremented in 1 ms steps until the locHRG level is reached. This algorithm allows for the fastest recovery from a thermal regulation event while averaging a current that keeps the temperature below T_{CF} .

The FAN54110 terminates charging completely if the junction temperature exceeds $T_{SHUTDWN}$ (145°C).

In both cases, the temperature event is indicated via the TREG_FLAG and TSD_FLAG bits in the FAULT_INTERRUPT (Reg05h) register. Recovery from either event is indicated via the OT_RECOV bit in the same register.

Additional θ_{JA} data points, measured using the FAN54110 evaluation board, are given in the table below (measured with T_A=25°C). Note that as power dissipation increases, the effective θ_{JA} decreases due to the larger difference between the die temperature and ambient.

Table 1. Evaluation Board Measured θ_{JA}

Power (W)	Θ _{JA}
0. 504	54°C/W
0. 844	50°C/W
1. 506	46°C/W

Production Test Mode

Production Test Mode (PTM) provides power for the system from the USB port. This eliminates the burden of having an attached battery during production line testing.

PTM is enabled when the PTM_EN bit is HIGH and when the battery is absent (NOBAT (Reg05h[0])=1). In PTM, Q1 (see Figure 2) is turned on, but it is current limited to about 2.5 A. V_{BAT} is initially regulated to the default V_{OREG} setting of 3.54 V in PTM. However, VBAT can be programmed to output any V_{OREG} from 3.38 V to 4.44 V, as specified in the VOREG (Reg04h[5:0]) bits.

Care should be taken to limit the RMS current in PTM Mode. Thermal regulation ($T_{\mbox{CF}}$) and thermal shutdown are enabled in PTM.

Charging Status and Interrupt Reporting

The STAT and POK_B pins are used to indicate to the host the presence or absence of a valid charging source, charging status, as well as fault status.

The FAULT_INTERRUPT (Reg05h[7:0]) and STATUS_INTERRUPT (Reg07h[7:5]) bits have associated MASK bits and there is a general INTERRUPT (Reg01h[0]) bit. This bit is set when any interrupt occurs, even if the occurring fault is masked. While this bit is set to 1, all subsequent STAT pulses are prevented. Reading this register clears the bit.

The FAULT_INTERRUPT and STATUS_INTERRUPT registers and the INTERRUPT (Reg01h[0]) bit should be read and cleared on every STAT pin rising edge and POK_B pin falling edge to ensure that all faults, masked or otherwise, as well as adapter presence changes are immediately available to the host.

POK_B Pin

The POK_B pin is used to indicate the presence or absence of a valid charging source to the host processor.

Table 2. POK_B Pin State

POK_B	Charging Source
HIGH	absent or not valid
LOW	VINMIN(1) < VBUS < VBUSOVP

STAT Pin

The STAT pin is used to indicate charging status, as well as to signal the host processor of a change in the status of the IC or system.

The static state of the STAT pin is determined by whether the IC is charging a battery:

Table 3. STAT Pin Static State

CHARGER	NOBAT (Reg05h[0])	STAT Pin		
ON	0	LOW		
OFF	Х	HIGH		
Х	1	HIGH		

The STAT pin emits a 128 μ s LOW pulse whenever an unmasked interrupt event occurs and the INTERRUPT (Reg01h[0]) bit is reset to "0".

Any interrupt pulse that occurs while STAT is statically LOW is preceded by 128 μs of STAT HIGH, as shown below.

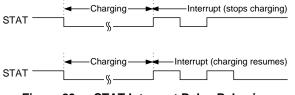


Figure 22. STAT Interrupt Pulse Behavior

Masking the STAT Pin Interrupt

The FAULT_INTERRUPT and STATUS_INTERRUPT register bits have associated MASK bits located in Reg06h[7:0] and Reg07h[3:1] that will mask STAT pin pulses.

When a mask bit is set and an event occurs:

- The associated FAULT_INTERRUPT or STATUS_INTERRUPT bit is set
- The INTERRUPT bit is set
- The STAT pin will <u>not pulse</u>

INTERRUPT (Reg01h[0]) Bit

When bits in the FAULT_INTERRUPT and STATUS_INTERRUPT register are set, the INTERRUPT (Reg01h[0]) bit is set before the falling edge of STAT.

If additional interrupt conditions occur before the host clears the INTERRUPT bit by reading Reg01h, the STAT pin does not pulse.

I²C Interface

The serial interface is compatible with Standard Mode and Fast Mode I²C bus specifications. The SCL line is an input and the SDA line is a bi-directional open-drain output; it can only pull down the bus when active. The SDA line only pulls LOW during data reads and when signaling ACK. All data is shifted in MSB (bit 7) first.

Slave Address

Table 4. I²C Slave Address Byte

				-			
7	6	5	4	3	2	1	0
1	1	0	1	0	1	1	R/W

In hex notation, the slave address assumes a 0 LSB. The hex slave address for the FAN54110 is D6.

Bus Timing

As shown below, data is normally transferred when SCL is LOW. Data is clocked in on the rising edge of SCL. Typically, data transitions at or shortly after the falling edge of SCL to allow ample time for the data to set up before the next SCL rising edge.

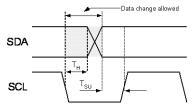
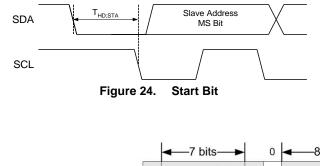
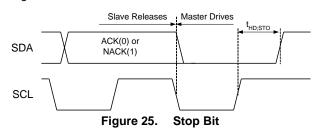
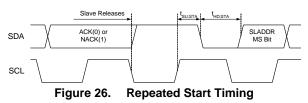
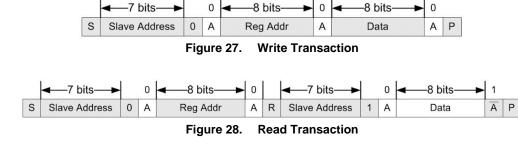




Figure 23. **Data Transfer Timing**


Each bus transaction begins and ends with SDA and SCL HIGH. A transaction begins with a START condition, which is defined as SDA transitioning from 1 to 0 with SCL HIGH, as shown below.

A transaction ends with a STOP condition, which is defined as SDA transitioning from 0 to 1 with SCL HIGH, as shown in Figure 25.

During a read from the FAN54110, the master issues a Repeated Start after sending the register address and before resending the slave address. The Repeated Start is a 1-to-0 transition on SDA while SCL is HIGH, as shown below.



Read and Write Transactions

The figures below outline the sequences for data read and write. Bus control is signified by the shading of the packet, Master Drives Bus Slave Drives Bus defined as and All addresses and data are MSB first.

Table 5. Bit Definitions for Write and Read Transactions

Symbol Definition						
S	START, see Figure 24.					
A	ACK. The slave drives SDA to 0 to acknowledge the preceding packet.					
Ā	NACK. The slave sends a 1 to NACK the preceding packet.					
R	Repeated START, see Figure 26					
Р	STOP, see Figure 25					

Register Descriptions

Table 6. Register Bit Definitions

Default values are in bold text with VBUS removed and VBAT=3.8V.

Bit	Name	Туре	D	escription			
IC_INF	-0	Registe	r Address: 00h	Default= 100X XXXX (XXh)			
7:5	VENDOR	R	100: Identifies ON Semiconductor as the s	00: Identifies ON Semiconductor as the supplier			
4:3	PN	R	R Part number bits, see the Ordering Info on page 2				
2:0	REV	R	R IC Revision. Revision is 1.X, where X is the decimal of these 3 bits				

CHAR	GE_CTRL1	Registe	er Address	s: 01h	Default=0011 0010 (32h)					
7	RESET	W	go to into	Setting this bit to 1 resets all registers to default values and deactivates t ₃₂₈ , causing the part to go to into IDLE State until the next I ² C write reactivates t ₃₂₈ . This bit returns 0 when read.						
6	HZ_MODE	R/W								
5	VBUS_REG	R/W								
4	VBUS_LOOP	R								
3	Reserved	R	This bit re	This bit returns 0 when read.						
			disabled i	us is at or above this threshold, a V _{BI} until the fault clears. V_{BUSOVP} Threshold	_{US} OVP fault is enunciated and the charger is					
			[2:1]	VBUSOVP Threshold						
2:1	VBUSOVP	R/W	R/W	R/W	00	6.5				
			01	7.0						
			10	7.5						
			11	8.0						
0	INTERRUPT	RC	A 1 indicates that a fault has occurred. See the Charging Status and Interrupt Reporting section for details. While this bit is set to 1, all subsequent STAT pulses are prevented. Reading this register clears the bit.							

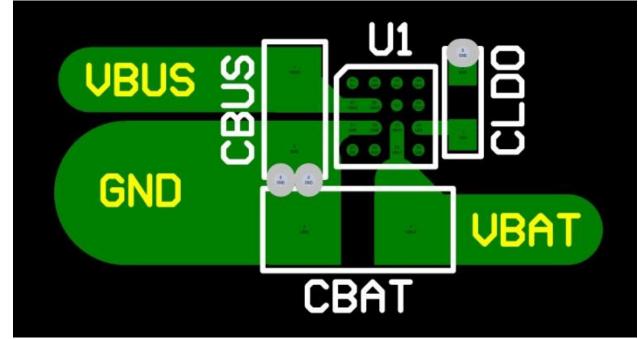
CHAR	GE_CTRL2	Registe	er Address	: 02h		Default=0010 0111 (27h)				
7	PTM_EN	R/W	1: Produ							
6	Reserved	R	This bit re	turns 0 w	hen read.					
			Thermal I	Regulatio	n and Shutdown section for d					
			Table 8.	-	erature Threshold Settin	gs 1				
5:4	TCF	R/W	DEC	BIN	T _{CF}					
5.4	TCF		0	00	70					
			1	01	85					
			2	10	100					
			3	11	120					
			Sets the \	/BUS_REF t	hreshold.	-				
			Table 9.	V _{BUS_F}	REF Threshold					
			DEC	BIN	V _{BUS_REF}					
3:2	VBUS_REF	R/W	0	00	4.22					
			1	01	4.32					
			2	10	4.37					
			3	11	4.46					
1	VRCH_DIS	R/W								
0	ITERM_DIS	R/W			inates at the programmed I⊤⊧ s not terminate at the prog					

BAT		Registe	er Addres	s: 03h		Default=0010 0110 (26h)
			consume	urrent, loch d by the 3.3). locharge	3 V LDO, therefore, reduc	nt drawn from VBUS during charging. Current ces the current available to charge the battery.
			DEC	BIN	I _{OCHARGE} (mA)	
			0	0000	100	
			1	0001	300	
			2	0010	350	
			3	0011	400	
			4	0100	450	
		5.44	5	0101	500	
7:4	IOCHARGE	R/W	6	0110	550	
			7	0111	600	
			8	1000	650	
			9	1001	700	
			10	1010	750	
			11	1011	800	
			12	1100	850	
			13	1101	900	
			14	1110	950	
			15	1111	1000	
			Table 1 ⁴	1. ITERM	Settings	
			DEC	BIN	ITERM (mA)	
			0	0000	20	
			1	0001	30	
			2	0010	40	
			3	0011	50	
			4	0100	60	
			5	0101	70	
3:0	ITERM	R/W	6	0110	80	
5.0		1.7, 4, 4	7	0111	90	
			8	1000	100	
			9	1001	110	
			10	1010	120	
			11	1011	130	
			12	1100	140	
			13	1101	150	-
			14	1110	160	-
			15	1111	170	

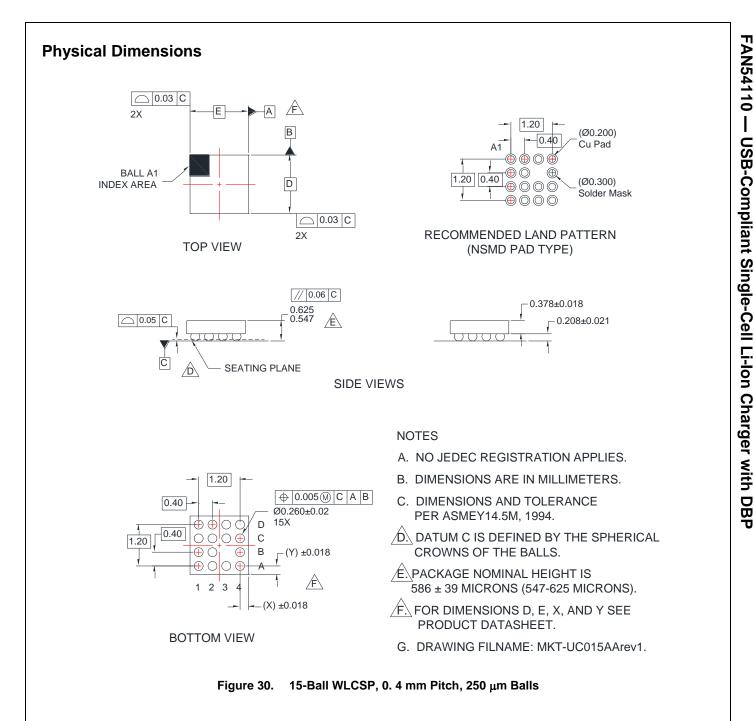
OREG	;	Regist	er Address:	r Address: 04h Default=0000 1000 (08h)							
7:6	Reserved	R	These bits	return 0 whe	en read.						
			Table 12.	OREG Se	ettings						
			DEC	BIN	HEX	VOREG]	DEC	BIN	HEX	VOREG
			0	000000	00	3.38		32	100000	20	4.02
			1	000001	01	3.40		33	100001	21	4.04
			2	000010	02	3.42		34	100010	22	4.06
			3	000011	03	3.44		35	100011	23	4.08
			4	000100	04	3.46		36	100100	24	4.10
			5	000101	05	3.48		37	100101	25	4.12
			6	000110	06	3.50		38	100110	26	4.14
			7	000111	07	3.52		39	100111	27	4.16
			8	001000	08	3.54]	40	101000	28	4.18
			9	001001	09	3.56]	41	101001	29	4.20
			10	001010	0A	3.58		42	101010	2A	4.22
			11	001011	0B	3.60		43	101011	2B	4.24
			12	001100	0C	3.62		44	101100	2C	4.26
			13	001101	0D	3.64		45	101101	2D	4.28
5:0	VOREG	R/W	14	001110	0E	3.66		46	101110	2E	4.30
0.0			15	001111	0F	3.68		47	101111	2F	4.32
			16	010000	10	3.70		48	110000	30	4.34
			17	010001	11	3.72		49	110001	31	4.36
			18	010010	12	3.74		50	110010	32	4.38
			19	010011	13	3.76		51	110011	33	4.40
			20	010100	14	3.78		52	110100	34	4.42
			21	010101	15	3.80		53	110101	35	4.44
			22	010110	16	3.82		54	110110	36	4.44
			23	010111	17	3.84		55	110111	37	4.44
			24	011000	18	3.86		56	111000	38	4.44
			25	011001	19	3.88		57	111001	39	4.44
			26	011010	1A	3.90		58	111010	ЗA	4.44
			27	011011	1B	3.92		59	111011	3B	4.44
			28	011100	1C	3.94		60	111100	3C	4.44
			29	011101	1D	3.96]	61	111101	3D	4.44
			30	011110	1E	3.98]	62	111110	3E	4.44
			31	011111	1F	4.00]	63	111111	3F	4.44

FAUL	T_INTERRUPT	Registe	er Addres	s: 05h	Default=0000 0000 (00h)			
			A 1 for a given bit indicates that a specific fault has occurred as described in the table Items in blue are transient conditions, whose bits are cleared when this register is rea other interrupts herein are not cleared unless the underlying condition has been removed See the Charging Status and Interrupt Reporting section for details. Table 13. Charger Interrupt Conditions					
			Bit #	FLAG	Interrupt			
		_ R	7	TSD_FLAG	Thermal shutdown (TJ > 145°C).			
7:0	FAULT		6	OVP_FLAG	VBUS OVP (over-voltage shutdown).			
	_INTERRUPT		5	TREG_FLAG	Charger thermal regulation is active.			
			4	TC_TO	T32Sec timer has timed out.			
			3	DBP_TO	Dead-Battery (DBP) timer (T30) has timed out.			
			2	OT_RECOV	Die temperature has fallen below 120°C.			
			1	OVP_RECOV	VBUS OVP recovery has occurred.			
			0	NOBAT	Battery absence was detected either at VBUS POR or after Charge Termination.			

FAULT_MASK Reg		Registe	r Address	: 06h	Default=0000 0000 (00h)		
	MASK		A mask bit of 1 prevents an interrupt pulse from being generated on the STAT pin. The INTERRUPT (Reg01h[0]) bit and corresponding FAULT_INTERRUPT register bit are still written. See the Charging Status and Interrupt Reporting section for details.				
			Bit #	FLAG	Interrupt		
			7	TSD_FLAG_M	Mask thermal shutdown (T _J > 145°C).		
7:0			6	OVP_FLAG_M	Mask VBUS OVP (over-voltage shutdown).		
7.0			5	TREG_FLAG_M	Mask charger thermal regulation.		
			4	TC_TO_M	Mask T32Sec timer time out.		
			3	DBP_TO_M	Mask Dead-Battery (DBP) timer (t30) time out.		
			2	OT_RECOV_M	Mask Die temperature recovery.		
			1	OVP_RECOV_M	Mask VBUS OVP recovery.		
			0	NOBAT_M	Mask battery absence detection.		


STAT	US_INTERRUPT	Defa	ult=0100 (0000 (40h)		Register Address: 07h	
		R	Items in blue are transient conditions, whose bits are cleared when this register is read. The other interrupts herein are not cleared unless the underlying condition has been removed. See the Charging Status and Interrupt Reporting section for details.				
			Table 14. VBUS Interrupt Conditions				
			Bit #	FLAG	Interrupt Generated		
7:5	VBUS_STAT		7	VBUS_CON	1 when OVP>V _{BUS} >V _{IIN(MIN)1} at VBUS POR from VBUS Insertion. 0 when VBUS is disconnected. VBUS_CON does not de-assert when a VBUS_OVP condition occurs after VBUS validation is successful.		
			6	POK_B	State of the POK_B pin		
			5	VALIDATION FAIL	1 indicates VBUS validation is attempted and failed. After a failure, VBUS validation is attempted every two seconds.		
4	Reserved	R	This bit returns 0 when read.				
	VBUS_MASK	R/W	INTERRU	PT (Reg01h[0]) bit	and correspondin	from being generated on the STAT pin. The gVBUS_STAT bit are still written. ng section for details.	
			Table 15	. VBUS Interru	pt Mask Bits		
3:1			Bit #	Mask			
			3	VBUS_CON MASK			
			2	POK_B MASK			
			1	1 VALIDATION FAIL MASK			
0	Reserved	R	This bit re	turns 0 when read.			

TMR_	TMR_RST		er Address: 08h	Default=0000 0000 (00h)
7	TMR_RST	W	Setting this bit to 1 resets the t_{32s} timer, allowing the the l^2C host. This bit returns 0 when read	IC to continue charging under control of
6:0	Reserved	R	These bits return 0 when read.	


MONITOR0		Registe	er Address: 10h Default=1000 0010 (82h)	
7	ITERM_CMP	R	0: I _{BAT} < I _{TERM} reference 1: I _{BAT} > I _{TERM} reference	
6	VBUS_VBAT	R	0: V _{BUS} < V _{BAT} 1: V _{BUS} > V _{BAT}	
5	VSHORT	R	 0: V_{BAT} > V_{SHORT} or IC is not charging. 1: V_{BAT} < V_{SHORT} and IC is charging. 	
4	DIS_LEVEL	R	 DIS pin is LOW. This bit always reads 0 when VBUS is disconnected. DIS pin is HIGH. 	
3:2	Reserved	R	This bit returns 0 when read.	
1	ICHG	R	 ICHG loop is controlling the charge current. ICHG loop is not limiting the charge current. 	
0	CV R 0: Charger is not in Constant Voltage (CV) Mode. Charger is either off or another loop (VBUS or ICHG) is limiting charge current. 1: Charger is on and in Constant Voltage (CV) Mode.		(VBUS or ICHG) is limiting charge current.	

PCB Layout Recommendations

Bypass capacitors should be placed as close to the IC as possible. All power and ground pins should be routed to their bypass capacitors using top copper. Copper area connecting to the IC should be maximized to improve thermal performance.

Product-Specific Dimensions

D	E	X	Y
1. 560 ±0.030	1. 560 ± 0.030	0.180	0.180

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.