

Field Stop IGBT 650 V, 40 A FGA40N65SMD

General Description

Using novel field stop IGBT technology, **onsemi**'s new series of field stop 2nd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, induction heating, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Features

- Maximum Junction Temperature: $T_J = 175$ °C
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.9 \text{ V (Typ.)}$ @ $I_C = 40 \text{ A}$
- Fast Switching: $E_{OFF} = 6.5 \mu J/A$
- Tighten Parameter Distribution
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Solar Inverter, UPS, Welder, Induction Heating
- Telecom, ESS

TO-3P-3LD CASE 340BZ

MARKING DIAGRAM

FGA40N65SMD = Specific Device Code A = Assembly Location

YWW = Date Code (Year & Week)

ZZ = Assembly Lot

ORDERING INFORMATION

Device	Package	Shipping
FGA40N65SMD	TO-3P-3LD (Pb-Free)	450 Units / Tube

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Value	Unit	
V _{CES}	Collector to Emitter Voltage	650	V	
V _{GES}	Gate to Emitter Voltage	Emitter Voltage		
	Transient Gate to Emitter Voltage		±30	Α
I _C	Collector Current	@ T _C = 25°C	80	Α
	Collector Current	@ T _C = 100°C	40	Α
I _{CM} (Note 1)	Pulsed Collector Current		120	Α
I _F	Diode Forward Current	@ T _C = 25°C	40	Α
	Diode Forward Current	@ T _C = 100°C	20	Α
I _{FM} (Note 1)	Pulsed Diode Maximum Forward Current		120	Α
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	349	W
	Maximum Power Dissipation	@ T _C = 100°C	174	W
TJ	Operating Junction Temperature	-55 to +175	°C	
T _{stg}	Storage Temperature Range	-55 to +175	°C	
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from ca	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: Pulse width limited by max. junction temperature.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case, Max.	0.43	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case, Max.	1.5	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V_{FM}	Diode Forward Voltage	I _F = 20 A	T _C = 25°C	-	2.1	2.6	V
			T _C = 175°C	-	1.7	-	
E _{rec}	Reverse Recovery Energy	I _F = 20 A, dI _F /dt = 200 A/μs	T _C = 175°C	-	96	-	μJ
t _{rr}	Diode Reverse Recovery Time	αιρ/αι = 200 Α/μδ	T _C = 25°C	-	42	-	ns
			T _C = 175°C	-	200	-	
I _{rr}	Diode Peak Reverse Recovery Current]	T _C = 25°C	-	3.6	-	Α
	Current		T _C = 175°C	-	8.0	-	
Q _{rr}	Diode Reverse Recovery Charge]	T _C = 25°C	-	76	-	nC
			T _C = 175°C	-	800	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted)

OFF CHARACTERISTICS BV_{CES} Collector to Emitter Breakdown Voltage V_{GE} = 0 V, I_{C} = 250 μA 650 - - V V V V V V V V	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ABV _{CES} / ΔT _J Temperature Coefficient of Breakdown Voltage V _{GE} = 0 V, I _C = 250 μA - 0.6 - 0.	OFF CHARAC	TERISTICS	•	•	•		
Collector Cut-Off Current	BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	650	-	-	V
GES G-E Leakage Current VGE = VGES, VCE = 0 V - - ±400 nA	ΔBV_{CES} / ΔT_{J}	•	V_{GE} = 0 V, I_{C} = 250 μA	-	0.6	-	V/°C
Vos	I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	250	μΑ
$ \begin{array}{c} V_{GE(th)} & G-E \ Threshold \ Voltage \\ V_{CE(sat)} & Collector \ to \ Emitter \ Saturation \ Voltage \\ V_{CE(sat)} & Collector \ to \ Emitter \ Saturation \ Voltage \\ \hline V_{CE(sat)} & I_{C} = 40 \ A, \ V_{GE} = 15 \ V \\ \hline I_{C} = 40 \ A, \ V_{GE} = 15 \ V, \\ \hline I_{C} = 175^{\circ}C & - 2.1 & - V \\ \hline V_{CE(sat)} & - 2.1 & - V \\ \hline \hline DYNAMIC \ CHARACTERISTICS \\ \hline C_{ies} & Input \ Capacitance & V_{CE(sat)} & V_{CE(sat)} & - 1880 & - PF \\ \hline C_{oes} & Output \ Capacitance & Image: V_{CE(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} & Turn-On \ Delay \ Time & V_{CC(sat)} & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} & Turn-Off \ Delay \ Time & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} & Turn-Off \ Delay \ Time & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} $	I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0 V	-	-	±400	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ON CHARACT	ERISTICS					
C ₁ = 40 A V _{GE} = 15 V, C ₁ = 175°C C ₁ C ₂ = 10 V C ₁ = 175°C C ₂ = 15 V, C ₃ = 15 V, C ₄ = 15 V, C ₅ = 175°C C ₆ = 1880 C ₇ = 1880	V _{GE(th)}	G-E Threshold Voltage	$I_C = 250 \mu A, V_{CE} = V_{GE}$	3.5	4.5	6.0	V
T _C = 175°C	V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 40 A, V _{GE} = 15 V	-	1.9	2.5	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I _C = 40 A, V _{GE} = 15 V, T _C = 175°C	-	2.1	-	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHA	ARACTERISTICS					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{ies}	Input Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$	-	1880	-	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{oes}	Output Capacitance	f = 1 MHz	-	180	-	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{res}	Reverse Transfer Capacitance		-	50	-	pF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING C	HARACTERISTICS					-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	Turn-On Delay Time		-	12	16	ns
t _f Fall Time - 13 17 ns E _{on} Turn-On Switching Loss - 0.82 1.23 mJ E _{off} Turn-Off Switching Loss - 0.26 0.34 mJ E _{ts} Total Switching Loss - 1.08 1.57 mJ t _d (on) Turn-On Delay Time VCC = 400 V, IC = 40 A, RG = 6 Ω, VGE = 15 V, Inductive Load, TC = 175°C - 15 - ns t _d (off) Turn-Off Delay Time - 116 - ns t _f Fall Time - 16 - ns E _{on} Turn-On Switching Loss - 1.08 - mJ E _{off} Turn-Off Switching Loss - 0.60 - mJ E _{ts} Total Switching Loss - 1.68 - mJ Q _g Total Gate Charge VCE = 400 V, IC = 40 A, VGE = 40 A, VGE = 15 V - 119 180 nC Q _g Gate to Emitter Charge VCE = 400 V, IC = 40 A, VGE = 15 V - 113 20 nC	t _r	Rise Time		-	20	28	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(off)}	Turn-Off Delay Time		-	92	120	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _f	Fall Time		-	13	17	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{on}	Turn-On Switching Loss		-	0.82	1.23	mJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{off}	Turn-Off Switching Loss		-	0.26	0.34	mJ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{ts}	Total Switching Loss		-	1.08	1.57	mJ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, I_{C} = 40 \text{ A},$	-	15	-	ns
tf Fall Time - 16 - ns Eon Turn-On Switching Loss - 1.08 - mJ Eoff Turn-Off Switching Loss - 0.60 - mJ Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge VCE = 400 V, IC = 40 A, VGE = 40 A, VGE = 15 V - 119 180 nC Qge Gate to Emitter Charge VGE = 15 V - 13 20 nC	t _r	Rise Time	$R_G = 6 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 175^{\circ}C$	-	22	-	ns
Eon Turn-On Switching Loss - 1.08 - mJ Eoff Turn-Off Switching Loss - 0.60 - mJ Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge VCE = 400 V, IC = 40 A, VGE = 400 A, VGE = 400 A, VGE = 15 V - 119 180 nC Qge Gate to Emitter Charge VGE = 15 V - 13 20 nC	t _{d(off)}	Turn-Off Delay Time		-	116	-	ns
Eoff Turn-Off Switching Loss - 0.60 - mJ Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V - 119 180 nC Qge Gate to Emitter Charge - 13 20 nC	t _f	Fall Time		-	16	-	ns
Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V - 119 180 nC Qge Gate to Emitter Charge - 13 20 nC	E _{on}	Turn-On Switching Loss	1	-	1.08	-	mJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{off}	Turn-Off Switching Loss		-	0.60	-	mJ
Q _{ge} Gate to Emitter Charge $V_{GE} = 15 \text{ V}$ - 13 20 nC	E _{ts}	Total Switching Loss		-	1.68	-	mJ
Q _{ge} Gate to Emitter Charge – 13 20 nC	Qg	Total Gate Charge	V _{CE} = 400 V, I _C = 40 A,	-	119	180	nC
Q _{gc} Gate to Collector Charge – 58 90 nC	Q _{ge}	Gate to Emitter Charge	V _{GE} = 15 V	-	13	20	nC
	Q _{gc}	Gate to Collector Charge		-	58	90	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Typical Output Characteristics

Figure 2. Typical Output Characteristics

Figure 3. Typical Saturation Voltage Characteristics

Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 5. Saturation Voltage vs. V_{GE}

Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 9. Turn-on Characteristics vs. Gate Resistance

Figure 10. Turn-off Characteristics vs. Gate Resistance

Figure 11. Switching Loss vs. Gate Resistance

Figure 12. Turn-on Characteristics vs. Collector Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 13. Turn-off Characteristics vs. Collector Current

Figure 15. Load Current Vs. Frequency

Figure 17. Forward Characteristics

Figure 14. Switching Loss vs. Collector Current

Figure 16. SOA Characteristics

Figure 18. Reverse Recovery Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 19. Reverse Recovery Time

Figure 20. Stored Charge

40

Figure 21. Transient Thermal Impedance of IGBT

Figure 22. Transient Thermal Impedance of Diode

TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ ISSUE O

DATE 31 OCT 2016

DOCUMENT NUMBER:	98AON13862G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-3P-3LD / EIAJ SC-65,	ISOLATED	PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales