Field Stop IGBT 650 V, 40 A FGA40N65SMD #### **General Description** Using novel field stop IGBT technology, **onsemi**'s new series of field stop 2nd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, induction heating, telecom, ESS and PFC applications where low conduction and switching losses are essential. #### **Features** - Maximum Junction Temperature: $T_J = 175$ °C - Positive Temperature Co-efficient for Easy Parallel Operating - High Current Capability - Low Saturation Voltage: $V_{CE(sat)} = 1.9 \text{ V (Typ.)}$ @ $I_C = 40 \text{ A}$ - Fast Switching: $E_{OFF} = 6.5 \mu J/A$ - Tighten Parameter Distribution - These Devices are Pb-Free and are RoHS Compliant #### **Applications** - Solar Inverter, UPS, Welder, Induction Heating - Telecom, ESS TO-3P-3LD CASE 340BZ #### **MARKING DIAGRAM** FGA40N65SMD = Specific Device Code A = Assembly Location YWW = Date Code (Year & Week) ZZ = Assembly Lot #### **ORDERING INFORMATION** | Device | Package | Shipping | |-------------|------------------------|---------------------| | FGA40N65SMD | TO-3P-3LD
(Pb-Free) | 450 Units /
Tube | #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Description | Value | Unit | | |--------------------------|---|--------------------------|------|---| | V _{CES} | Collector to Emitter Voltage | 650 | V | | | V _{GES} | Gate to Emitter Voltage | Emitter Voltage | | | | | Transient Gate to Emitter Voltage | | ±30 | Α | | I _C | Collector Current | @ T _C = 25°C | 80 | Α | | | Collector Current | @ T _C = 100°C | 40 | Α | | I _{CM} (Note 1) | Pulsed Collector Current | | 120 | Α | | I _F | Diode Forward Current | @ T _C = 25°C | 40 | Α | | | Diode Forward Current | @ T _C = 100°C | 20 | Α | | I _{FM} (Note 1) | Pulsed Diode Maximum Forward Current | | 120 | Α | | P_{D} | Maximum Power Dissipation | @ T _C = 25°C | 349 | W | | | Maximum Power Dissipation | @ T _C = 100°C | 174 | W | | TJ | Operating Junction Temperature | -55 to +175 | °C | | | T _{stg} | Storage Temperature Range | -55 to +175 | °C | | | TL | Maximum Lead Temp. for Soldering Purposes, 1/8" from ca | 300 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: Pulse width limited by max. junction temperature. #### THERMAL CHARACTERISTICS | Symbol | Parameter | Value | Unit | |-------------------------|---|-------|------| | $R_{\theta JC}(IGBT)$ | Thermal Resistance, Junction to Case, Max. | 0.43 | °C/W | | $R_{\theta JC}$ (Diode) | Thermal Resistance, Junction to Case, Max. | 1.5 | °C/W | | $R_{ heta JA}$ | Thermal Resistance, Junction to Ambient, Max. | 40 | °C/W | # **ELECTRICAL CHARACTERISTICS OF THE DIODE** ($T_C = 25^{\circ}C$ unless otherwise noted) | Symbol | Parameter | Test Conditions | | Min. | Тур. | Max. | Unit | |------------------|--|--|------------------------|------|------|------|------| | V_{FM} | Diode Forward Voltage | I _F = 20 A | T _C = 25°C | - | 2.1 | 2.6 | V | | | | | T _C = 175°C | - | 1.7 | - | | | E _{rec} | Reverse Recovery Energy | I _F = 20 A,
dI _F /dt = 200 A/μs | T _C = 175°C | - | 96 | - | μJ | | t _{rr} | Diode Reverse Recovery Time | αιρ/αι = 200 Α/μδ | T _C = 25°C | - | 42 | - | ns | | | | | T _C = 175°C | - | 200 | - | | | I _{rr} | Diode Peak Reverse Recovery
Current |] | T _C = 25°C | - | 3.6 | - | Α | | | Current | | T _C = 175°C | - | 8.0 | - | | | Q _{rr} | Diode Reverse Recovery Charge |] | T _C = 25°C | - | 76 | - | nC | | | | | T _C = 175°C | - | 800 | - | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # **ELECTRICAL CHARACTERISTICS OF THE IGBT** ($T_C = 25^{\circ}C$ unless otherwise noted) | OFF CHARACTERISTICS BV_{CES} Collector to Emitter Breakdown Voltage V_{GE} = 0 V, I_{C} = 250 μA 650 - - V V V V V V V V | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|------------------------------------|---|--|------|------|------|------| | ABV _{CES} / ΔT _J Temperature Coefficient of Breakdown Voltage V _{GE} = 0 V, I _C = 250 μA - 0.6 - 0. | OFF CHARAC | TERISTICS | • | • | • | | | | Collector Cut-Off Current | BV _{CES} | Collector to Emitter Breakdown Voltage | $V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$ | 650 | - | - | V | | GES G-E Leakage Current VGE = VGES, VCE = 0 V - - ±400 nA | ΔBV_{CES} / ΔT_{J} | • | V_{GE} = 0 V, I_{C} = 250 μA | - | 0.6 | - | V/°C | | Vos | I _{CES} | Collector Cut-Off Current | V _{CE} = V _{CES} , V _{GE} = 0 V | - | - | 250 | μΑ | | $ \begin{array}{c} V_{GE(th)} & G-E \ Threshold \ Voltage \\ V_{CE(sat)} & Collector \ to \ Emitter \ Saturation \ Voltage \\ V_{CE(sat)} & Collector \ to \ Emitter \ Saturation \ Voltage \\ \hline V_{CE(sat)} & I_{C} = 40 \ A, \ V_{GE} = 15 \ V \\ \hline I_{C} = 40 \ A, \ V_{GE} = 15 \ V, \\ \hline I_{C} = 175^{\circ}C & - 2.1 & - V \\ \hline V_{CE(sat)} & - 2.1 & - V \\ \hline \hline DYNAMIC \ CHARACTERISTICS \\ \hline C_{ies} & Input \ Capacitance & V_{CE(sat)} & V_{CE(sat)} & - 1880 & - PF \\ \hline C_{oes} & Output \ Capacitance & Image: V_{CE(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 1800 & - PF \\ \hline C_{res} & Reverse \ Transfer \ Capacitance & Image: V_{CC(sat)} & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} & Turn-On \ Delay \ Time & V_{CC(sat)} & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} & Turn-Off \ Delay \ Time & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} & Turn-Off \ Delay \ Time & - 12 \ 16 \ ns \\ \hline V_{GC(sat)} $ | I _{GES} | G-E Leakage Current | V _{GE} = V _{GES} , V _{CE} = 0 V | - | - | ±400 | nA | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ON CHARACT | ERISTICS | | | | | | | C ₁ = 40 A V _{GE} = 15 V, C ₁ = 175°C C ₁ C ₂ = 10 V C ₁ = 175°C C ₂ = 15 V, C ₃ = 15 V, C ₄ = 15 V, C ₅ = 175°C C ₆ = 1880 C ₇ | V _{GE(th)} | G-E Threshold Voltage | $I_C = 250 \mu A, V_{CE} = V_{GE}$ | 3.5 | 4.5 | 6.0 | V | | T _C = 175°C | V _{CE(sat)} | Collector to Emitter Saturation Voltage | I _C = 40 A, V _{GE} = 15 V | - | 1.9 | 2.5 | V | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | I _C = 40 A, V _{GE} = 15 V,
T _C = 175°C | - | 2.1 | - | V | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | DYNAMIC CHA | ARACTERISTICS | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C _{ies} | Input Capacitance | $V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ | - | 1880 | - | pF | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C _{oes} | Output Capacitance | f = 1 MHz | - | 180 | - | pF | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | C _{res} | Reverse Transfer Capacitance | | - | 50 | - | pF | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | SWITCHING C | HARACTERISTICS | | | | | - | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | t _{d(on)} | Turn-On Delay Time | | - | 12 | 16 | ns | | t _f Fall Time - 13 17 ns E _{on} Turn-On Switching Loss - 0.82 1.23 mJ E _{off} Turn-Off Switching Loss - 0.26 0.34 mJ E _{ts} Total Switching Loss - 1.08 1.57 mJ t _d (on) Turn-On Delay Time VCC = 400 V, IC = 40 A, RG = 6 Ω, VGE = 15 V, Inductive Load, TC = 175°C - 15 - ns t _d (off) Turn-Off Delay Time - 116 - ns t _f Fall Time - 16 - ns E _{on} Turn-On Switching Loss - 1.08 - mJ E _{off} Turn-Off Switching Loss - 0.60 - mJ E _{ts} Total Switching Loss - 1.68 - mJ Q _g Total Gate Charge VCE = 400 V, IC = 40 A, VGE = 40 A, VGE = 15 V - 119 180 nC Q _g Gate to Emitter Charge VCE = 400 V, IC = 40 A, VGE = 15 V - 113 20 nC | t _r | Rise Time | | - | 20 | 28 | ns | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | t _{d(off)} | Turn-Off Delay Time | | - | 92 | 120 | ns | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | t _f | Fall Time | | - | 13 | 17 | ns | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | E _{on} | Turn-On Switching Loss | | - | 0.82 | 1.23 | mJ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | E _{off} | Turn-Off Switching Loss | | - | 0.26 | 0.34 | mJ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | E _{ts} | Total Switching Loss | | - | 1.08 | 1.57 | mJ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | t _{d(on)} | Turn-On Delay Time | $V_{CC} = 400 \text{ V}, I_{C} = 40 \text{ A},$ | - | 15 | - | ns | | tf Fall Time - 16 - ns Eon Turn-On Switching Loss - 1.08 - mJ Eoff Turn-Off Switching Loss - 0.60 - mJ Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge VCE = 400 V, IC = 40 A, VGE = 40 A, VGE = 15 V - 119 180 nC Qge Gate to Emitter Charge VGE = 15 V - 13 20 nC | t _r | Rise Time | $R_G = 6 \Omega$, $V_{GE} = 15 V$,
Inductive Load, $T_C = 175^{\circ}C$ | - | 22 | - | ns | | Eon Turn-On Switching Loss - 1.08 - mJ Eoff Turn-Off Switching Loss - 0.60 - mJ Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge VCE = 400 V, IC = 40 A, VGE = 400 A, VGE = 400 A, VGE = 15 V - 119 180 nC Qge Gate to Emitter Charge VGE = 15 V - 13 20 nC | t _{d(off)} | Turn-Off Delay Time | | - | 116 | - | ns | | Eoff Turn-Off Switching Loss - 0.60 - mJ Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V - 119 180 nC Qge Gate to Emitter Charge - 13 20 nC | t _f | Fall Time | | - | 16 | - | ns | | Ets Total Switching Loss - 1.68 - mJ Qg Total Gate Charge V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V - 119 180 nC Qge Gate to Emitter Charge - 13 20 nC | E _{on} | Turn-On Switching Loss | 1 | - | 1.08 | - | mJ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | E _{off} | Turn-Off Switching Loss | | - | 0.60 | - | mJ | | Q _{ge} Gate to Emitter Charge $V_{GE} = 15 \text{ V}$ - 13 20 nC | E _{ts} | Total Switching Loss | | - | 1.68 | - | mJ | | Q _{ge} Gate to Emitter Charge – 13 20 nC | Qg | Total Gate Charge | V _{CE} = 400 V, I _C = 40 A, | - | 119 | 180 | nC | | Q _{gc} Gate to Collector Charge – 58 90 nC | Q _{ge} | Gate to Emitter Charge | V _{GE} = 15 V | - | 13 | 20 | nC | | | Q _{gc} | Gate to Collector Charge | | - | 58 | 90 | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### TYPICAL PERFORMANCE CHARACTERISTICS Figure 1. Typical Output Characteristics Figure 2. Typical Output Characteristics Figure 3. Typical Saturation Voltage Characteristics Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level Figure 5. Saturation Voltage vs. V_{GE} Figure 6. Saturation Voltage vs. V_{GE} ## TYPICAL PERFORMANCE CHARACTERISTICS (continued) Figure 7. Capacitance Characteristics Figure 8. Gate Charge Characteristics Figure 9. Turn-on Characteristics vs. Gate Resistance Figure 10. Turn-off Characteristics vs. Gate Resistance Figure 11. Switching Loss vs. Gate Resistance Figure 12. Turn-on Characteristics vs. Collector Current ## TYPICAL PERFORMANCE CHARACTERISTICS (continued) Figure 13. Turn-off Characteristics vs. Collector Current Figure 15. Load Current Vs. Frequency Figure 17. Forward Characteristics Figure 14. Switching Loss vs. Collector Current Figure 16. SOA Characteristics Figure 18. Reverse Recovery Current # TYPICAL PERFORMANCE CHARACTERISTICS (continued) Figure 19. Reverse Recovery Time Figure 20. Stored Charge 40 Figure 21. Transient Thermal Impedance of IGBT Figure 22. Transient Thermal Impedance of Diode #### TO-3P-3LD / EIAJ SC-65, ISOLATED CASE 340BZ ISSUE O **DATE 31 OCT 2016** | DOCUMENT NUMBER: | 98AON13862G | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------------------|---|-------------|--| | DESCRIPTION: | TO-3P-3LD / EIAJ SC-65, | ISOLATED | PAGE 1 OF 1 | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales