

# **Actuator Control Driver** with Hall Sensor

# Advance Information

## LC898402XHTBG

#### Overview

This LSI is the actuator driver with integrated Hall and constant current driver. It has also a built-in EEPROM and temperature sensor. It can realize high-performance feedback control with external PID controller.

#### **Features**

- Built-in Digital Operation Circuit
  - Any Coefficient can be Specified by 2-wire Serial I/F (TWIF)
- 2-wire Serial Interface
  - ◆ I<sup>2</sup>C-compatible Protocol Mode
  - ♦ High-speed Protocol Mode
  - 16 Selectable Slave Addresses
    - $\cdot$  50h(W) / 51h(R)
    - $\cdot 74h(W) / 75h(R)$
    - $\cdot$  E8h(W) / E9h(R)
    - · E4h(W) / E5h(R) factory-configured
    - · Other 12 Addresses can be selected
- Built-in A/D Converter
- Built-in D/A Converter
  - Hall Offset
  - Constant Current Bias
- Built-in Hall Sensor
  - Si Hall Sensor
- Built-in VGA
  - Hall Amplifier
- Built-in EEPROM
  - 64 byte (16 byte/page)
- Built-in OSC
- Built-in Bi-Direction Constant Current Driver
  - ◆ 130 mA
- Package
  - ♦ WLCSP 6-pin (2 × 3 pin), Thickness Max 0.29 mm, with Backside Coat
  - Pb-Free, Halogen Free/BFR Free and RoHS Compliant
- Supply Voltage
  - V<sub>DD</sub> (2.6 V to 3.3 V)



#### **MARKING DIAGRAM**

o 402HALYW

A = Assembly Location

L = Wafer Lot Y = Year W = Work Week

#### **ORDERING INFORMATION**

| Device        | Package                               | Shipping <sup>†</sup> |
|---------------|---------------------------------------|-----------------------|
| LC898402XHTBG | WLCSP6<br>(Pb-Free /<br>Halogen Free) | 4000 /<br>Tape & Reel |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

#### **PIN DESCRIPTION**

#### **PIN DESCRIPTION**

|         | Туре              |  |  |  |  |  |
|---------|-------------------|--|--|--|--|--|
| I INPUT |                   |  |  |  |  |  |
| 0       | OUTPUT            |  |  |  |  |  |
| В       | BIDIRECTION       |  |  |  |  |  |
| Р       | Power Supply, GND |  |  |  |  |  |
| NC      | NOT CONNECT       |  |  |  |  |  |

• 2-wire Serial Interface

◆ SCL B 2-wire Serial Interface Clock Pin
 ◆ SDA B 2-wire Serial Interface Data Pin

• Driver Interface

◆ OUT1 O Driver Output (to Actuator)
 ◆ OUT2 O Driver Output (to Actuator)

• Power Supply Pin

◆ VDD P Power Supply

♦ VSS P GND

## Process When Pins are Not Used:

PIN TYPE "O" – Ensure that it is set to OPEN.

PIN TYPE "I" – OPEN is inhibited. Ensure that it is connected to the VDD or VSS even when it is unused.

(Please contact onsemi for more information about selection of VDD or VSS.)

PIN TYPE "B" – If you are unsure about processing method on the pin description of pin layout table, please contact us.

Note that incorrect processing of unused pins may result in defects.

## **PIN LAYOUT**

| Circuit Name | Number of PINs |
|--------------|----------------|
| Driver       | 2              |
| Power        | 2              |
| Logic        | 2              |

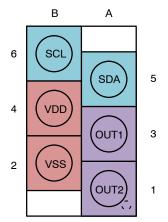



Figure 1. Bottom View

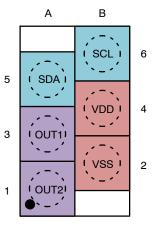
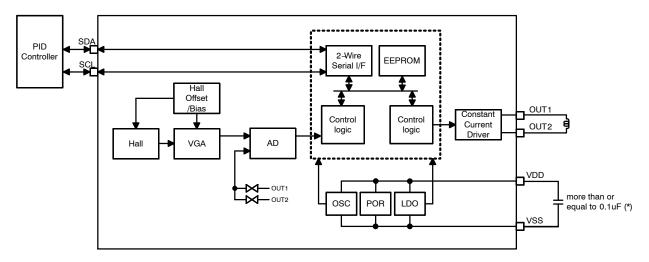
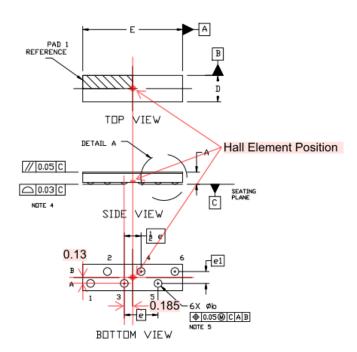




Figure 2. Top View


## **BLOCK DIAGRAM**



<sup>\*</sup>Consider capacitance of capacitor between VDD and VSS. According to power source environment, attach an additional capacitor in camera module.

Figure 3. Block Diagram

## **HALL ELEMENT POSITION**



Please refer to package diagram for each dimension.

#### **ELECTRICAL CHARACTERISTICS**

Table 1. ABSOLUTE MAXIMUM RATINGS (VSS = 0 V)

| Symbol                               | Parameter                     | Condition             | Value                          | Unit |
|--------------------------------------|-------------------------------|-----------------------|--------------------------------|------|
| V <sub>DD</sub> 33 max               | Supply Voltage                | $T_A \le 25^{\circ}C$ | -0.3 to 4.6                    | V    |
| V <sub>I</sub> 33, V <sub>O</sub> 33 | Input/Output Voltage          | T <sub>A</sub> ≤ 25°C | -0.3 to V <sub>DD</sub> 33+0.3 | V    |
| T <sub>stg</sub>                     | Storage Ambient Temperature   |                       | -55 to +125                    | °C   |
| T <sub>opr</sub>                     | Operating Ambient Temperature |                       | -30 to +70                     | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED OPERATING CONDITIONS ( $T_A = -30 \text{ to } +70^{\circ}\text{C}$ , VSS = 0 V)

| Symbol             | Parameter           | ameter Min |     | Max                | Unit |
|--------------------|---------------------|------------|-----|--------------------|------|
| V <sub>DD</sub> 33 | Supply Voltage      | 2.6        | 2.8 | 3.3                | V    |
| $V_{IN}$           | Input Voltage Range | 0          |     | V <sub>DD</sub> 33 | V    |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. DC CHARACTERISTICS: INPUT/OUTPUT LEVEL (VSS = 0 V, VDD = 2.6 V to 3.3 V, T<sub>A</sub> = -30 to +70°C)

| Symbol | Characteristic           | Condition              | Min | Тур | Max | Unit | Applicable Pins |
|--------|--------------------------|------------------------|-----|-----|-----|------|-----------------|
| VIH    | High-level Input Voltage | CMOS Compliant Schmitt | 1.4 |     |     | V    | SCL, SDA        |
| VIL    | Low-level Input Voltage  |                        |     |     | 0.4 | V    |                 |
| VOL    | Low-level Output Voltage | IOL = 2 mA             |     |     | 0.2 | V    | SCL, SDA        |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### Table 4. DRIVER OUTPUT (OUT1, OUT2) (VSS = 0 V, VDD = 2.8 V, TA = 25°C)

| Symbol            | Characteristic  | Condition | Min   | Тур | Max   | Unit | Applicable Pins |
|-------------------|-----------------|-----------|-------|-----|-------|------|-----------------|
| I <sub>full</sub> | Maximum Current |           | 123.5 | 130 | 136.5 | mA   | OUT1, OUT2      |

#### **Table 5. NON-VOLATILE MEMORY CHARACTERISTICS**

| Symbol          | Characteristic | Condition | Min | Тур | Max  | Unit   | Applicable Circuit |
|-----------------|----------------|-----------|-----|-----|------|--------|--------------------|
| EN              | Endurance      |           |     |     | 1000 | Cycles | EEPROM             |
| RT              | Data Retention |           | 10  |     |      | Years  |                    |
| t <sub>WT</sub> | Write Time     |           |     |     | 20   | ms     |                    |

## **AC CHARACTERISTICS**

## **VDD Supply Timing**

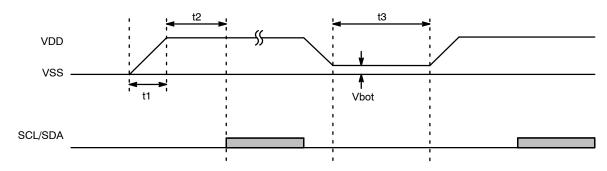



Figure 4. VDD Supply Timing

It is available to use 2-wire serial interface 5 ms later for Power On Reset of VDD.

## **Table 6. VDD SUPPLY TIMING**

| Symbol | item                                           | Min | Тур | Max | Unit |
|--------|------------------------------------------------|-----|-----|-----|------|
| t1     | VDD Turn On Time                               |     |     | 3   | ms   |
| t2     | 2-wire Serial Interface Start Time from VDD On | 5   |     |     | ms   |
| t3     | VDD Off Time                                   | 100 |     |     | ms   |
| Vbot   | Bottom Voltage                                 |     |     | 0.1 | V    |

#### **AC Specification**

(a) 2-wire Serial Interface: Fast-mode and Fast-mode Plus

Figure 5 shows interface timing definition and Table 7 shows electric characteristics.

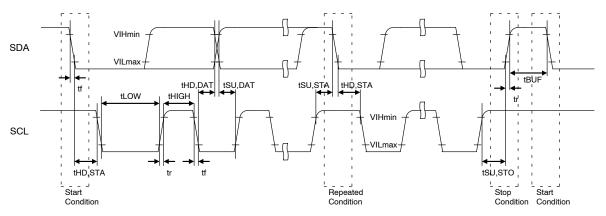



Figure 5. Fast-mode and Fast-mode Plus Timing Definition

Table 7. FAST-MODE AND FAST-MODE PLUS AC CHARACTERISTICS

|         | Item                                         | Pin        | Fast-mode     |     |     | Fa            |     |      |      |
|---------|----------------------------------------------|------------|---------------|-----|-----|---------------|-----|------|------|
| Symbol  |                                              | Name       | Min           | Тур | Max | Min           | Тур | Max  | Unit |
| FSCL    | SCL Clock Frequency                          | SCL        |               |     | 400 |               |     | 1000 | kHz  |
| tHD,STA | START Condition Hold Time                    | SCL<br>SDA | 0.6           |     |     | 0.26          |     |      | μs   |
| tLOW    | SCL Clock Low Period                         | SCL        | 1.3           |     |     | 0.5           |     |      | μs   |
| tHIGH   | SCL Clock High Period                        | SCL        | 0.6           |     |     | 0.26          |     |      | μS   |
| tSU,STA | Setup Time for Repetition<br>START Condition | SCL<br>SDA | 0.6           |     |     | 0.26          |     |      | μs   |
| tHD,DAT | Data Hold Time                               | SCL<br>SDA | 0<br>(Note 1) |     | 0.9 | 0<br>(Note 1) |     |      | μs   |
| tSU,DAT | Data Setup Time                              | SCL<br>SDA | 100           |     |     | 50            |     |      | ns   |
| tr      | SDA, SCL Rising Time                         | SCL<br>SDA |               |     | 300 |               |     | 120  | ns   |
| tf      | SDA, SCL Falling Time                        | SCL<br>SDA |               |     | 300 |               |     | 120  | ns   |
| tSU,STO | STOP Condition Setup Time                    | SCL<br>SDA | 0.6           |     |     | 0.26          |     |      | μs   |
| tBUF    | Bus Free Time between STOP and START         | SCL<br>SDA | 1.3           |     |     | 0.5           |     |      | μs   |

<sup>1.</sup> This LSI is designed for a condition with typ. 20 ns of hold time. If SDA signal is unstable around falling point of SCL signal, please implement an appropriate treatment on board, such as inserting a resistor.

## (b) 2-wire Serial Interface: High-speed Mode

Figure 6 shows interface timing definition and Table 8 shows electric characteristics.

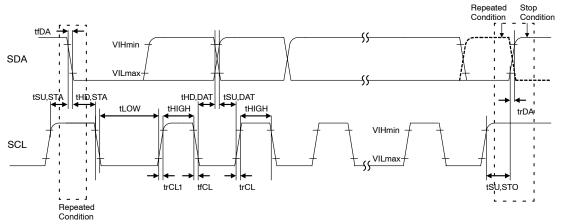
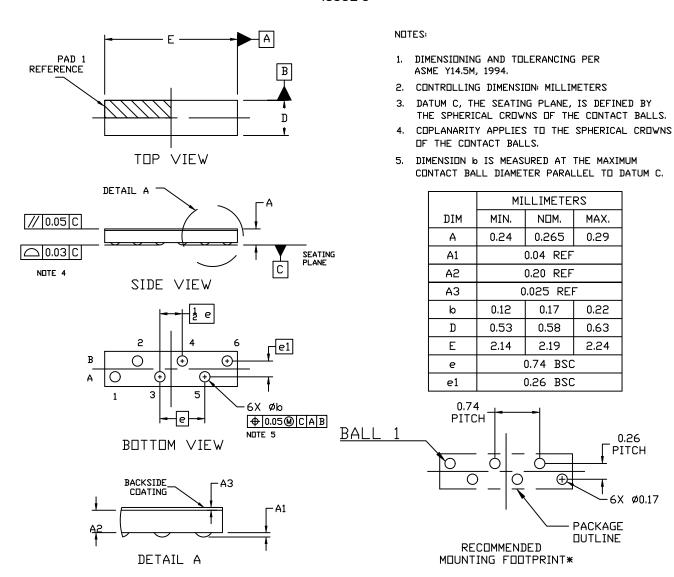



Figure 6. High-speed Mode Timing Definition


#### Table 8. HIGH-SPEED MODE AC CHARACTERISTICS

|         |                                                                                     | Pin                        | Cb = 100 pF (max) |     |     |               | =   |     |      |
|---------|-------------------------------------------------------------------------------------|----------------------------|-------------------|-----|-----|---------------|-----|-----|------|
| Symbol  | Item                                                                                | Name                       | Min               | Тур | Max | Min           | Тур | Max | Unit |
| FSCL    | SCL Clock Frequency                                                                 | SCL                        |                   |     | 3.4 |               |     | 1.7 | MHz  |
| tSU,STA | Setup Time for Repeated<br>START Condition                                          | SCL<br>SDA                 | 160               |     |     | 160           |     |     | ns   |
| tHD,STA | (Repeated) START Condition<br>Hold Time                                             | SCL<br>SDA                 | 160               |     |     | 160           |     |     | ns   |
| tLOW    | SCL Clock Low Period                                                                | SCL                        | 160               |     |     | 320           |     |     | ns   |
| tHIGH   | SCL Clock High Period                                                               | SCL                        | 60                |     |     | 120           |     |     | ns   |
| tHD,DAT | Data Hold Time                                                                      | SCL<br>SDA                 | 0<br>(Note 2)     |     | 70  | 0<br>(Note 2) |     | 150 | ns   |
| tSU,DAT | Data Setup Time                                                                     | SCL<br>SDA                 | 10                |     |     | 10            |     |     | ns   |
| trCL    | SCL Rising Time                                                                     | SCL                        | 10                |     | 40  | 20            |     | 80  | ns   |
| trCL1   | SCL Rising Time After a<br>Repeated START Condition and<br>After an Acknowledge Bit | SCL                        | 10                |     | 80  | 20            |     | 160 | ns   |
| tfCL    | SCL Falling Time                                                                    | SCL                        | 10                |     | 40  | 20            |     | 80  | ns   |
| trDA    | SDA Rising Time                                                                     | SDA                        | 10                |     | 80  | 20            |     | 160 | ns   |
| tfDA    | SDA Falling Time                                                                    | SDA                        | 10                |     | 80  | 20            |     | 160 | ns   |
| tSU,STO | STOP Condition Setup Time                                                           | SCL<br>SDA                 | 160               |     |     | 160           |     |     | ns   |
| Cb      | Capacitive Load for Each Bus<br>Line                                                | SCL<br>and<br>SDA<br>lines |                   |     | 100 |               |     | 400 | pF   |

<sup>2.</sup> This LSI is designed for a condition with typ. 20 ns of hold time. If SDA signal is unstable around falling point of SCL signal, please implement an appropriate treatment on board, such as inserting a resistor.

#### PACKAGE DIMENSIONS

#### WLCSP6, 0.58x2.19x0.265 CASE 567XY ISSUE C



\*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative