onsemi

Dual 4-Input NAND Gates MC14012B

The MC14012B dual 4-input NAND gates are constructed with P-Channel and N-Channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired.

Features

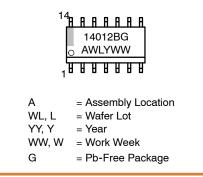
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- All Outputs Buffered
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Pin-for-Pin Replacements for Corresponding CD4000 Series B Suffix Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
T _L Lead Temperature (8-Second Soldering)		260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65 °C To 125 °C


This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

D SUFFIX CASE 751A

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC14012B **Dual 4–Input NAND Gate**

$OUT_A \begin{bmatrix} \\ IN & 1_A \end{bmatrix}$ $IN & 2_A \begin{bmatrix} \\ IN & 3_A \end{bmatrix}$ $IN & 4_A \begin{bmatrix} \\ IN & 4_A \end{bmatrix}$ $NC \begin{bmatrix} \\ \\ V_{1-1} \end{bmatrix}$	2 13 3 12 4 11 5 10 6 9] V _{DD}] OUT _B] IN 4 _B] IN 3 _B] IN 2 _B] IN 1 _B	$2^{3}_{4}_{5}_{10}_{11}_{12}_{12}_{12}_{12}_{12}_{12}_{12$
V _{SS} [7 8] NC NC = NO CONNECTION		TION	V _{DD} = PIN 14 V _{SS} = PIN 7
Figure	1. Pin Assi	gnment	Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14012BDG	SOIC-14 (Pb-Free)	55 Units / Rail
MC14012BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape & Reel
NLV14012BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape & Reel

DISCONTINUED (Note 2)

Device	Package	Shipping [†]
NLV14012BDG	SOIC-14 (Pb-Free)	55 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

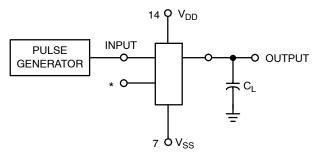
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. 2. **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most

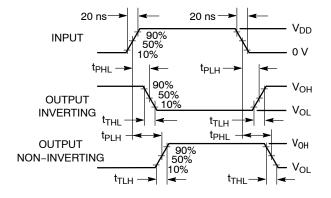
current information on this device may be available on www.onsemi.com.

ELECTRICAL CHARACTERISTICS	3 (Voltages Referenced to V _{SS})
----------------------------	--

				-55	õ°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 3)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_{O} = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_{O} = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_{O} = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11	_ _ _	Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (V_{OH} = 2.5 \ \text{Vdc}) \\ (V_{OH} = 4.6 \ \text{Vdc}) \\ (V_{OH} = 9.5 \ \text{Vdc}) \\ (V_{OH} = 13.5 \ \text{Vdc}) \end{array}$	Source	Іон	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8		-1.7 -0.36 -0.9 -2.4		mAdo
$\begin{array}{l} (V_{OL} = 0.4 \; Vdc) \\ (V_{OL} = 0.5 \; Vdc) \\ (V_{OL} = 1.5 \; Vdc) \end{array}$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	_ _ _	mAdo
Input Current		l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdo
Input Capacitance (V _{in} = 0)		C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	0.25 0.5 1.0	- - -	0.0005 0.0010 0.0015	0.25 0.5 1.0	- - -	7.5 15 30	μAdo
Total Supply Current (Note (Dynamic plus Quiesce Per Gate, C _L = 50 pF)		Ι _Τ	5.0 10 15			I _T = (0	.3 μΑ/kHz) f .6 μΑ/kHz) f .9 μΑ/kHz) f	+ I _{DD} /N			μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
4. The formulas given are for the typical characteristics only at 25 °C.
5. To calculate total supply current at loads other than 50 pF:


 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$


where: I_T is in μA (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.001 x the number of exercised gates per package.

SWITCHING CHARACTERISTICS (Note 6) (C_L = 50 pF, T_A = 25 $^{\circ}$ C)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 7)	Max	Unit
Output Rise Time	t _{TLH}					ns
t _{TLH} = (1.35 ns/pF) C _L + 33 ns		5.0	-	100	200	
t _{TLH} = (0.60 ns/pF) C _L + 20 ns		10	-	50	100	
$t_{TLH} = (0.40 \text{ ns/PF}) \text{ C}_{L} + 20 \text{ ns}$		15	-	40	80	
Output Fall Time	t _{THL}					ns
t _{THL} = (1.35 ns/pF) C _L + 33 ns		5.0	-	100	200	
t _{THL} = (0.60 ns/pF) C _L + 20 ns		10	-	50	100	
t _{THL} = (0.40 ns/pF) C _L + 20 ns		15	-	40	80	
Propagation Delay Time	t _{PLH} , t _{PHL}					ns
t _{PLH} , t _{PHL} = (0.90 ns/pF) C _L + 115 ns		5.0	-	160	300	
t _{PLH} , t _{PHL} = (0.36 ns/pF) C _L + 47 ns		10	-	65	130	
t _{PLH} , t _{PHL} = (0.26 ns/pF) C _L + 37 ns		15	-	50	100	

The formulas given are for the typical characteristics only at 25 °C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

*All unused inputs of AND, NAND gates must be connected to $V_{DD}.$ All unused inputs of OR, NOR gates must be connected to $V_{SS}.$

Figure 3. Switching Time Test Circuit and Waveforms

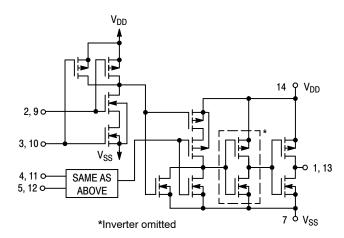


Figure 4. Circuit Schematic - One of Two Gates Shown

TYPICAL B-SERIES GATE CHARACTERISTICS

These typical curves are not guarantees, but are design aids. Caution: The maximum rating for output current is 10 mA per pin.

VOLTAGE TRANSFER CHARACTERISTICS

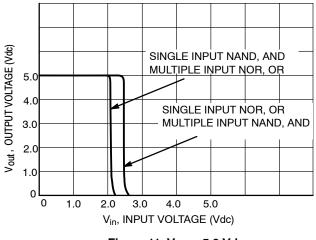


Figure 11. $V_{DD} = 5.0$ Vdc

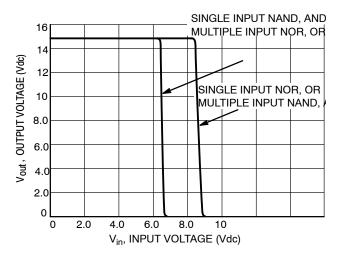
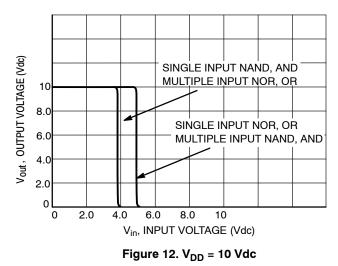



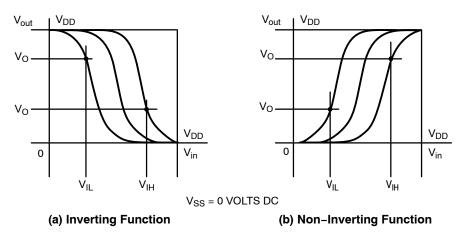
Figure 13. V_{DD} = 15 Vdc

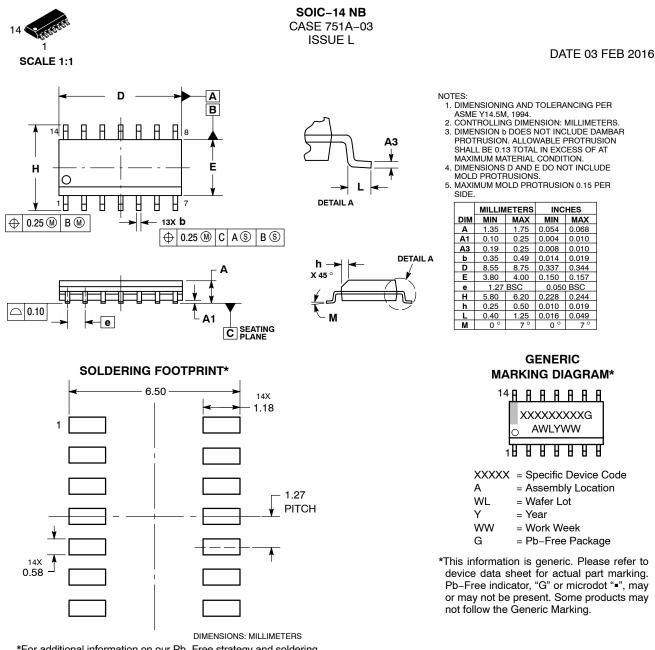
DC NOISE MARGIN

The DC noise margin is defined as the input voltage range from an ideal "1" or "0" input level which does not produce output state change(s). The typical and guaranteed limit values of the input values V_{IL} and V_{IH} for the output(s) to be at a fixed voltage V_O are given in the Electrical Characteristics table. V_{IL} and V_{IH} are presented graphically in Figure 11.

Guaranteed minimum noise margins for both the "1" and "0" levels =

1.0 V with a 5.0 V supply 2.0 V with a 10.0 V supply 2.5 V with a 15.0 V supply




Figure 14. DC Noise Immunity

REVISION HISTORY

ĺ	Revision	Description of Changes	Date
	12	NLV14012BDG OPN Marked as Discontinued + Rebranded the Data Sheet to onsemi format	7/11/2025

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

 DOCUMENT NUMBER:
 98ASB42565B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-14 NB
 PAGE 1 OF 2

 onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi axis me any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DESCRIPTION: SOIC-14 NB PAGE 2 OF	DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
BESCHIFTION. COIC-14 NB FAGE 2 OF	DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>