Dual J-K Flip-Flop

The MC14027B dual J–K flip–flop has independent J, K, Clock (C), Set (S) and Reset (R) inputs for each flip–flop. These devices may be used in control, register, or toggle functions.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Swing Independent of Fanout
- Logic Edge-Clocked Flip-Flop Design
- Logic State is Retained Indefinitely with Clock Level Either High or Low; Information is Transferred to the Output Only on the Positive—Going Edge of the Clock Pulse
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4027B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

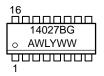
1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com



SOIC-16 D SUFFIX CASE 751B

PIN ASSIGNMENT

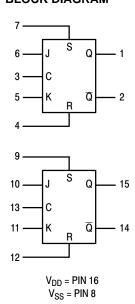
Q _A [1●] V _{DD}
\overline{Q}_A [2	15] Q _B
C _A	3	14] Q _B
R _A [4	13	СВ
K _A [5	12] R _B
J _A [6	11	K _Β
S _A [7	10] J _B
V _{SS} [8	9] S _B

MARKING DIAGRAM

A = Assembly Location

 $\begin{array}{ll} \text{WL} &= \text{Wafer Lot} \\ \text{YY, Y} &= \text{Year} \\ \text{WW} &= \text{Work Week} \\ \text{G} &= \text{Pb-Free Indicator} \end{array}$

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

TRUTH TABLE

		Outp	uts*				
C†	J	K	S	R	Q _n ‡	Q _{n+1}	Q _{n+1}
	1	Х	0	0	0	1	0
\mathcal{L}	Х	0	0	0	1	1	0
	0	Х	0	0	0	0	1
	Х	1	0	0	1	0	1
	1	1	0	0	Qo	Qo	Qo
$\overline{}$	Χ	Х	0	0	Х	Q _n	$\overline{Q_n}$
Х	Χ	Х	1	0	Х	1	0
Х	Х	Х	0	1	Х	0	1
Х	Χ	Χ	1	1	Х	1	1

No Change

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14027BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14027BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14027BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14027BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

X = Don't Care

[‡] = Present State

^{† =} Level Change

^{* =} Next State

Capable.

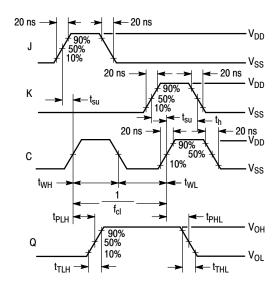
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				-5	5°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95		Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11	- - -	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	ГОН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8		-1.7 -0.36 -0.9 -2.4		mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		I _{in}	15	-	±0.1	-	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	1.0 2.0 4.0	- - -	0.002 0.004 0.006	1.0 2.0 4.0	_ _ _	30 60 120	μAdc
Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		l _T	5.0 10 15			$I_T = ($	D.8 μΑ/kHz) f 1.6 μΑ/kHz) f 2.4 μΑ/kHz) f	+ I _{DD}			μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002.


Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.

^{4.} To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time t_{TLH} , t_{THL} = (1.5 ns/pF) C_L + 25 ns t_{TLH} , t_{THL} = (0.75 ns/pF) C_L + 12.5 ns t_{TLH} , t_{THL} = (0.55 ns/pF) C_L + 12.5 ns	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Times** Clock to Q, Q tp_LH, tp_HL = (1.7 ns/pF) C _L + 90 ns tp_LH, tp_HL = (0.66 ns/pF) C _L + 42 ns tp_LH, tp_HL = (0.5 ns/pF) C _L + 25 ns	t _{РLН} ,	5.0 10 15	- - -	175 75 50	350 150 100	ns
Set to Q, Q t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 90 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 42 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 25 ns		5.0 10 15	- - -	175 75 50	350 150 100	
Reset to Q, Q t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 265 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 67 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 50 ns		5.0 10 15	- - -	350 100 75	450 200 150	
Setup Times	t _{su}	5.0 10 15	140 50 35	70 25 17	- - -	ns
Hold Times	t _h	5.0 10 15	140 50 35	70 25 17	- - -	ns
Clock Pulse Width	t_{WH} , t_{WL}	5.0 10 15	330 110 75	165 55 38	- - -	ns
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	3.0 9.0 13	1.5 4.5 6.5	MHz
Clock Pulse Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15	- - -	- - -	15 5.0 4.0	μs
Removal Times Set	t _{rem}	5 10 15	90 45 35	10 5 3	- - -	ns
Reset		5 10 15	50 25 20	- 30 - 15 - 10	- - -	
Set and Reset Pulse Width	t _{WH}	5.0 10 15	250 100 70	125 50 35	- - -	ns

^{5.} The formulas given are for the typical characteristics only at 25°C.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Inputs R and S low. For the measurement of t_{WH} , l/f_{cl} , and P_D the Inputs J and K are kept high.

Figure 1. Dynamic Signal Waveforms (J, K, Clock, and Output)

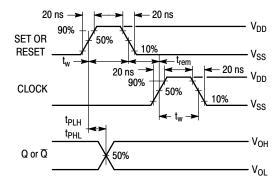
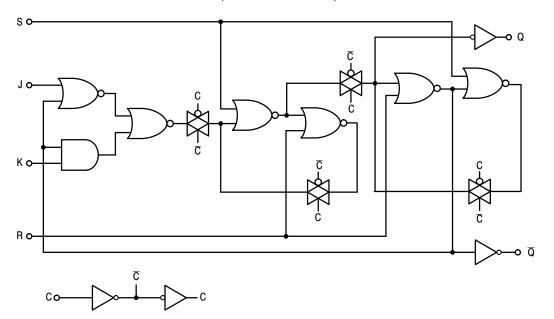
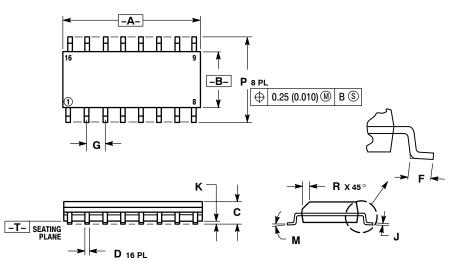



Figure 2. Dynamic Signal Waveforms (Set, Reset, Clock, and Output)

LOGIC DIAGRAM

(1/2 of Device Shown)



SOIC-16 CASE 751B-05 **ISSUE K**

DATE 29 DEC 2006

⊕ 0.25 (0.010) M T B S A S

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD ENGREPHING.

- PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION.
 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
U	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		
	COLLECTOR	PIN 1.	CATHODE	PIN 1.		PIN 1.	COLLECTOR, DYE #	1
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2	
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3	
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3	
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4	
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4	
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4	
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4	
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3	
12.	EMITTER	12.		12.	COLLECTOR, #3	12.	EMITTER, #3	
13.	BASE	13.		13.		13.	BASE, #2	RECOMMENDED
14.	COLLECTOR	14.	NO CONNECTION	14.		14.	EMITTER, #2	SOLDERING FOOTPRINT*
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	BASE, #1	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	8X
								← 6.40 →
STYLE 5:		STYLE 6:		STYLE 7:				
PIN 1.	DRAIN, DYE #1		CATHODE		SOURCE N-CH			16X 1.12 <
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPU	T)		
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPU			1 16
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,	<u>1</u>	
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPU	T)		
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPU	T)	16X 7	
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPU	T)	0.58	
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH			
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPU		_	
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPU			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPU	T)		
13.	GATE, #2	13.	ANODE	13.	GATE N-CH			
14.	SOURCE, #2	14.	ANODE	14.				
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPU	T)		PITCH
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH			
								□□18 9 1 = 1
								DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.							
DESCRIPTION:	SOIC-16		PAGE 1 OF 1					

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights or the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales