Quad Transparent Latch

The MC14042B Quad Transparent Latch is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each latch has a separate data input, but all four latches share a common clock. The clock polarity (high or low) used to strobe data through the latches can be reversed using the polarity input. Information present at the data input is transferred to outputs Q and \overline{Q} during the clock level which is determined by the polarity input. When the polarity input is in the logic "0" state, data is transferred during the low clock level, and when the polarity input is in the logic "1" state the transfer occurs during the high clock level.

Features

- Buffered Data Inputs
- Common Clock
- Clock Polarity Control
- Q and \overline{Q} Outputs
- Double Diode Input Protection
- Supply Voltage Range = 3.0 Vdc to 1 8 Vdc
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit	
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V	
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V	
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA	
P _D	Power Dissipation, per Package (Note 1)	500	mW	
T _A	Ambient Temperature Range	-55 to +125	°C	
T _{stg}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature (8–Second Soldering)	260	°C	

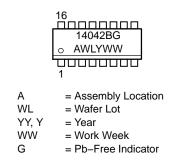
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

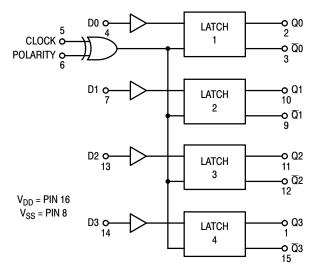
ON Semiconductor®


http://onsemi.com

PIN ASSIGNMENT

1 [
Q0 [3 14] D3 D0 [4 13] D2 CLOCK [5 12] Q2 POLARITY [6 11] Q2 D1 [7 10] Q1	Q3 [1•	16	þ	V _{DD}
D0 [4 13] D2 CLOCK [5 12] Q2 POLARITY [6 11] Q2 D1 [7 10] Q1	Q0 [2	15		Q 3
CLOCK [5 12] Q2 POLARITY [6 11] Q2 D1 [7 10] Q1	<u>Q</u> 0 [3	14		D3
POLARITY [6 11] Q2 D1 [7 10] Q1	D0 [4	13		D2
D1 [7 10] Q1	CLOCK [5	12		Q2
	POLARITY [6	11		Q2
V _{SS} [8 9] Q1	D1 [7	10		Q1
	V _{SS} [8	9	þ	Q1

MARKING DIAGRAM


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

TRUTH TABLE

Clock	Polarity	Q
0	0	Data
1	0	Latch
1	1	Data
0	1	Latch

LOGIC DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14042BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14042BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14042BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14042BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS	(Voltages Referenced to V _{SS})
----------------------------	---

				–55°C		25°C			125°C		
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage $V_{in} = V_{DD}$ or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
$(V_{O} = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_{O} = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_{O} = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	_ _ _	Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (\text{V}_{\text{OH}} = 2.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 4.6 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 9.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 13.5 \ \text{Vdc}) \end{array}$	Source	I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	_ _ _	1.0 2.0 4.0	- - -	0.002 0.004 0.006	1.0 2.0 4.0	- - -	30 60 120	μAdc
Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs all buffers switching)		ŀτ	5.0 10 15		<u>.</u>	$I_{T} = (2$	1.0 μΑ/kHz) f 2.0 μΑ/kHz) f 3.0 μΑ/kHz) f	+ I _{DD}	·	<u>.</u>	μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

The formulas given are for the typical characteristics only at 25°C.
To calculate total supply current at loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.004.

SWITCHING CHARACTERISTICS (Note 5) (C_L = 50 pF, T_A = 25° C)

Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time, D to Q, \overline{Q} t_{PLH} , t_{PHL} = (1.7 ns/pF) C _L + 135 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C _L + 57 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C _L + 35 ns	t _{PLH} , t _{PHL}	5.0 10 15	- - -	220 90 60	440 180 120	no
Propagation Delay Time, Clock to Q, \overline{Q} t_{PLH} , t_{PHL} = (1.7 ns/pF) C _L + 135 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C _L + 57 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C _L + 35 ns	t _{PLH} , t _{PHL}	5.0 10 15		220 90 60	440 180 120	ns
Clock Pulse Width	t _{WH}	5.0 10 15	300 100 80	150 50 40		ns
Clock Pulse Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15	- - -	- - -	15 5.0 4.0	μs
Hold Time	t _h	5.0 10 15	100 50 40	50 25 20		ns
Setup Time	t _{su}	5.0 10 15	50 30 25	0 0 0		ns

The formulas given are for the typical characteristics only at 25°C.
Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

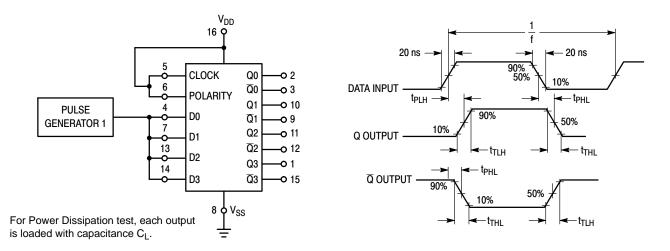
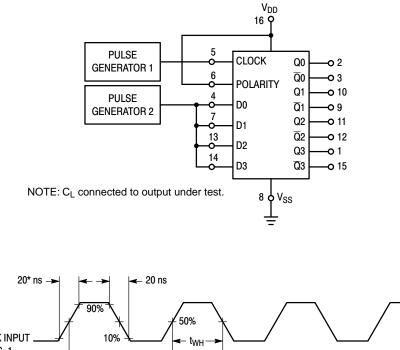
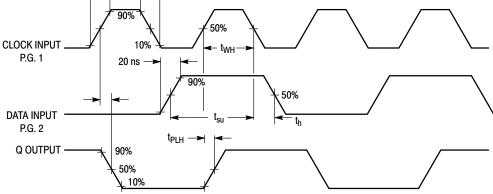
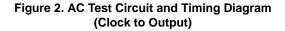
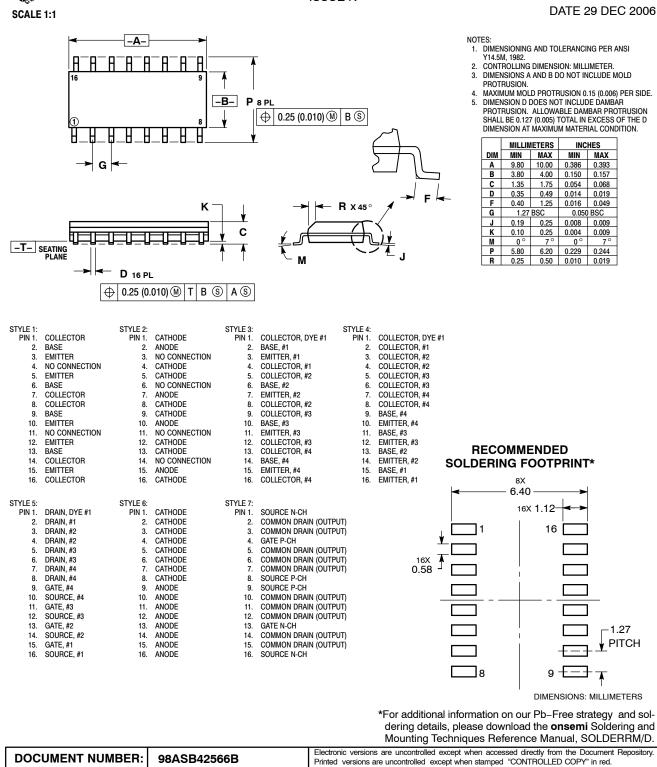





Figure 1. AC and Power Dissipation Test Circuit and Timing Diagram (Data to Output)



*Input clock rise time is 20 ns except for maximum rise time test.

onsemi

SOIC-16 CASE 751B-05 ISSUE K

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.

DESCRIPTION:

SOIC-16

PAGE 1 OF 1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>