Octal 3－State Noninverting Bus Transceiver

High－Performance Silicon－Gate CMOS

MC74HC245A， NC74HCT245A

MC74HC245A／MC74HCT245A is identical in pinout to the LS245． The MC74HC245A inputs are compatible with Standard CMOS outputs．External pull－up resistors make them compatible with LSTTL outputs．The MC74HCT245A may be used as a level converter for interfacing TTL or NMOS outputs to high speed CMOS inputs．

The HC245A／HCT245A is a 3 －state noninverting transceiver that is used for 2－way asynchronous communication between data buses． The device has an active－low Output Enable pin，which is used to place the I／O ports into high－impedance states．The Direction control determines whether data flows from A to B or from B to A ．

Features

－Output Drive Capability： 15 LSTTL Loads
－Outputs Directly Interface to CMOS，NMOS，and TTL
－Operating Voltage Range： 2.0 to 6.0 V （HC）， 4.5 to 5.5 V （HCT）
－Low Input Current： $1 \mu \mathrm{~A}$
－High Noise Immunity Characteristic of CMOS Devices
－In Compliance with the Requirements Defined by JEDEC Standard No． 7 A
－Chip Complexity： 308 FETs or 77 Equivalent Gates
－－Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements；AEC－Q100 Qualified and PPAP Capable
－These Devices are $\mathrm{Pb}-$ Free，Halogen Free and are RoHS Compliant

Figure 1．Logic Diagram

MARKING DIAGRAMS	
	20
20	明明昭明
A日明	XXXX
XXXXXXX	XXXX
AWLYYWWG	ALYW•
	\bigcirc
1	1
SOIC－20	TSSOP－20

$$
\begin{aligned}
& \text { XXXXXXX }=\text { Specific Device Code } \\
& \text { A } \quad=\text { Assembly Location } \\
& \text { WL, L }=\text { Wafer Lot } \\
& \text { YY, Y } \\
& \text { WW, Year } \\
& \text { G or }
\end{aligned}
$$

（Note：Microdot may be in either location）

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet．

MC74HC245A, NC74HCT245A

FUNCTION TABLE

Control Inputs		
Output Enable	Direction	
L	L	Data Transmitted from Bus B to Bus A
L	H	Data Transmitted from Bus A to Bus B
H	X	Buses Isolated (High-Impedance State)

X = don't care

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	DC Supply Voltage		-0.5 to +6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
In	DC Input Diode Current, per Pin		± 20	mA
Iout	DC Input Diode Current, Per Pin		± 35	mA
I_{Cc}	DC Supply Current, V_{CC} and GND Pins		± 75	mA
IIK	Input Clamp Current ($\mathrm{V}_{\text {IN }}<0$ or $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}$)		± 20	mA
lok	Output Clamp Current ($\mathrm{V}_{\text {OUT }}<0$ or $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\mathrm{CC}}$)		± 20	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 secs		260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Note 1)	SOIC-20W WQFN20 QFN20 TSSOP-20	$\begin{gathered} 96 \\ 99 \\ 111 \\ 150 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $25^{\circ} \mathrm{C}$	$\begin{array}{r} \hline \text { SOIC-20W } \\ \text { WQFN20 } \\ \text { QFN20 } \\ \text { TSSOP-20 } \end{array}$	$\begin{aligned} & 1302 \\ & 1256 \\ & 1127 \\ & 833 \end{aligned}$	mW
MSL	Moisture Sensitivity		Level 1	-
F_{R}	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	$\begin{aligned} & \hline>2000 \\ & >1000 \end{aligned}$	V
l LATCHUP	Latchup Performance (Note 3)		± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 76 mm -by-114mm, 2-ounce copper trace no air flow per JESD51-7.
2. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
3. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
MC74HC					
V_{CC}	DC Supply Voltage		2.0	6.0	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	DC Input, Output Voltage (Note 4)		0	$\mathrm{V}_{\text {CC }}$	V
T_{A}	Operating Free-Air Temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

MC74HCT

V_{CC}	DC Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	DC Input, Output Voltage (Note 4)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Free-Air Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	0	500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (MC74HC245A)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathbf{v}_{\mathrm{Cc}} \\ \mathbf{V} \end{gathered}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left\|\mathrm{l}_{\text {out }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \\ & \left\|l_{\text {out }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & V_{\text {in }}=V_{\text {IH }} \\ & \left\|I_{\text {out }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}\left\|\begin{array}{l}\left\lvert\, \begin{array}{l}\mathrm{l}_{\text {out }} \\ \mid l_{\text {out }}\end{array} \leq \leq 2.4 \mathrm{~mA}\right. \\ \\ \mid \mathrm{I}_{\text {out }}\end{array}\right\| \leq 5.8 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.7 \\ & 5.2 \end{aligned}$	
V ${ }_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & V_{\text {in }}=V_{\text {IL }} \\ & \left\|\left\|l_{\text {out }}\right\| \leq 20 \mu \mathrm{~A}\right. \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}\left\|\begin{array}{l}\left\|\begin{array}{l}\text { out }\end{array}\right\| \leq 2.4 \mathrm{~mA} \\ \mid l_{\text {out }} \\ \mid \mathrm{l}_{\text {out }}\end{array}\right\| \leq 6.0 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	
$\mathrm{I}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
l OZ	Maximum Three-State Leakage Current	Output in High-Impedance State $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ $V_{\text {out }}=V_{\text {CC }}$ or GND	6.0	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4.0	40	160	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (MC74HC245A)

	Parameter	$\underset{\mathbf{V C}}{\mathbf{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
Symbol			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, A to B, B to A (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 55 \\ & 15 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 95 \\ & 70 \\ & 19 \\ & 16 \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ 80 \\ 22 \\ 19 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Direction or Output Enable to A or B (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 90 \\ & 22 \\ & 19 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 140 \\ 110 \\ 28 \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 165 \\ 130 \\ 33 \\ 28 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Maximum Propagation Delay, Output Enable to A or B (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 90 \\ & 22 \\ & 19 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 140 \\ 110 \\ 28 \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 165 \\ 130 \\ 33 \\ 28 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 23 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 32 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance (Pin 1 or Pin 19)	-	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State I/O Capacitance (I/O in High-Impedance State)	-	15	15	15	pF
	Power Dissipation Capacitance (Per Transceiver Channel) (Note 5)		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			pF
CPD			40			

5. Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}^{2} f+I_{C C} V_{C C}$.

DC ELECTRICAL CHARACTERISTICS (MC74HCT245A)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V C}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit	
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	
V_{IL}	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left.\right\|_{\text {lout }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid l_{\text {outt }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	
		$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {outt }} \leq 6.0 \mathrm{~mA} \end{aligned}$	4.5	3.98	3.84	3.7		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid l_{\text {lout }} \leq 20 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	
		$\begin{aligned} & V_{\text {in }}=V_{1 H} \text { or } V_{1 L} \\ & \mid l_{\text {lout }} \leq 6.0 \mathrm{~mA} \end{aligned}$	4.5	0.26	0.33	0.4		
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND, Pins 1 or 19	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{l}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	5.5	4.0	40	160	$\mu \mathrm{A}$	
loz	Maximum Three-State Leakage Current	Output in High-Impedance State $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $V_{\text {out }}=V_{C C}$ or GND, I/O Pins	5.5	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$	
$\Delta \mathrm{l}_{\mathrm{CC}}$	Additional Quiescent Supply Current	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \text {, Any One Input } \\ & V_{\text {in }}=V_{C C} \text { or GND, Other Inputs } \\ & I_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	5.5	$\geq-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		mA	
				2.9	2.4			

AC ELECTRICAL CHARACTERISTICS (MC74HCT245A)

Symbol	Parameter	Guaranteed Limit			Unit
		$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, A to B or B to A (Figures 2 and 3)	22	28	33	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Maximum Propagation Delay, Direction or Output Enable to A or B (Figures 2 and 3)	30	36	42	ns
$\begin{aligned} & \text { tpzL, } \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Maximum Propagation Delay, Output Enable to A or 8 (Figures 2 and 3)	30	36	42	ns
$\begin{gathered} \mathrm{t}_{\mathrm{T} \mathrm{LH}}, \\ \mathrm{t}_{\mathrm{TH}}, \end{gathered}$	Maximum Output Transition Time. any Output (Figures 2 and 3)	12	15	18	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance (Pin 1 or 19)	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State I/O Capacitance, (I/O in High-Impedance State)	15	15	15	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Enabled Output)*	$\mathbf{p F}$	

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

MC74HC245A, NC74HCT245A

${ }^{*} \mathrm{C}_{\mathrm{L}}$ Includes probe and jig capacitance
Figure 2. Test Circuit

Device	$\mathbf{V}_{\mathbf{I N}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m}}, \mathbf{V}$
MC74HC245A	V_{CC}	$50 \% \times \mathrm{V}_{\mathrm{CC}}$
MC74HCT245A	3 V	1.3 V

Figure 3. Switching Waveforms

MC74HC245A, NC74HCT245A

ORDERING INFORMATION

Device	Package	Marking	Shipping †
MC74HC245ADWG	SOIC-20 Wide	HC245A	38 Units / Rail
MC74HC245ADWR2G	SOIC-20 Wide	HC245A	1000 Units / Tape \& Reel
MC74HC245ADWR2G-Q*	SOIC-20 Wide	HC245A	1000 Units / Tape \& Reel
MC74HC245ADTG	TSSOP-20	HC	75 Units / Rail
		$245 A$	2500 Units / Tape \& Reel
MC74HC245ADTR2G	TSSOP-20	$245 A$	2500 Units / Tape \& Reel
		HC	
MC74HC245ADTR2G-Q*	TSSOP-20	HCT245A	38 Units / Rail
MC74HCT245ADWG	SOIC-20 Wide	HCT245A	1000 Units / Tape \& Reel
MC74HCT245ADWR2G	SOIC-20 Wide	HCT	75 Units / Rail
MC74HCT245ADTG	TSSOP-20	HCT	2500 Units / Tape \& Reel
		$245 A$	2500 Units / Tape \& Reel
MC74HCT245ADTR2G	TSSOP-20	HCT	
MC74HCT245ADTR2G-Q*	TSSOP-20	$245 A$	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC - Q100 Qualified and PPAP Capable.

Figure 4. Expanded Logic Diagram

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION
PROTRUSION. ALLOWABLE PROTRUSIO
SHALL BE 0.13 TOTAL IN EXCESS OF B
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.

	MILLIMETERS	
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
c	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27	BSC
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	$7{ }^{\circ}$

\section*{MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

[^0]TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NO
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED $0.25(0.010)$ PER SIDE
5. DIMENSION K DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0	0°	8°	0

GENERIC MARKING DIAGRAM* НРННННННН

	XXXX
	XXXX
	ALYW.
\bigcirc	-

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.
DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

