N-Channel Power MOSFET 600 V, 745 m Ω

Features

- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

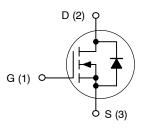
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	600	V
Gate-to-Source Vo	ltage		V_{GS}	±25	V
Continuous Drain	Steady	T _C = 25°C	I _D	6.6	Α
Current R _{θJC}	State	T _C = 100°C		4.2	
Power Dissipation - R ₀ JC	Steady State	T _C = 25°C	P _D	84	W
Pulsed Drain Current	t _p	= 10 μs	I _{DM}	27	Α
Operating Junction a Temperature	Junction and Storage re			-55 to +150	°C
Source Current (Boo	dy Diode)		IS	6.6	Α
Single Pulse Drain-to-Source Avalanche Energy (I _D = 2.5 A)			EAS	38	mJ
Peak Diode Recovery (Note 1)			dv/dt	15	V/ns
Lead Temperature for	or Solderin	g Leads	T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. $I_{SD} < 6.6$ A, di/dt \leq 400 A/ μ s, V_{DS} peak \leq $V_{(BR)DSS}$, $V_{DD} = 80\%$ $V_{(BR)DSS}$

THERMAL RESISTANCE

Parameter		ol Value	Unit
Junction-to-Case (Drain) NDD60N745	I1 R _{θJC}	1.5	°C/W
Junction-to-Ambient Steady State (Note 3) NDD60N745U1 (Note 2) NDD60N745U1-1 (Note 2) NDD60N745U1-35		47 98 95	°C/W

- 2. Insertion mounted
- 3. Surface mounted on FR4 board using 1" sq. pad size (Cu area = 1.127 in sq [2 oz] including traces)



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX		
600 V	745 mΩ @ 10 V		

N-Channel MOSFET

DPAK CASE 369C STYLE 2

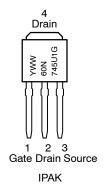
CASE 369AD STYLE 2

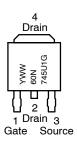
ORDERING INFORMATION

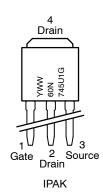
See detailed ordering and shipping information on page 3 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Test Conditions	s	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 r	mA	600			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				540		mV/°C
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 600 V, V _{GS} = 0 V	T _J = 25°C			1	μΑ
			T _J = 125°C			100	1
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = ±20 V				±100	nA
ON CHARACTERISTICS (Note 4)			-				
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250$	0 μΑ	2	3.2	4	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25°C, I _D =	= 250 μA		7.6		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 3.2$	25 A		610	745	mΩ
Forward Transconductance	9FS	$V_{DS} = 15 \text{ V}, I_D = 3.2$	25 A		5.6		S
DYNAMIC CHARACTERISTICS			-				
Input Capacitance	C _{iss}				440		pF
Output Capacitance	C _{oss}	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f$	= 1 MHz		27		1
Reverse Transfer Capacitance	C _{rss}	1			1.5		1
Effective output capacitance, energy related (Note 6)	C _{o(er)}	V _{GS} = 0 V, V _{DS} = 0 to 480 V			21]
Effective output capacitance, time related (Note 7)	C _{o(tr)}	I_D = constant, V_{GS} = 0 V, V_{DS} = 0 to 480 V			71]
Total Gate Charge	Q_g				15		nC
Gate-to-Source Charge	Q_{gs}		, ,,,,,		2.9		1
Gate-to-Drain Charge	Q _{gd}	$V_{DS} = 300 \text{ V}, I_D = 6.8 \text{ A}, V_{DS} = 6.8 \text{ A}$	/ _{GS} = 10 V		7.3		1
Plateau Voltage	V_{GP}		•		5.3		V
Gate Resistance	R_g				4.4		Ω
RESISTIVE SWITCHING CHARACTER)				•	
Turn-on Delay Time	t _{d(on)}				8		ns
Rise Time	t _r	V _{DD} = 300 V, I _D = 6.	.8 A.		10		1
Turn-off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, R_G = 0$	0 Ω		19		1
Fall Time	t _f	1			7		1
SOURCE-DRAIN DIODE CHARACTER					-	-	
Diode Forward Voltage	V_{SD}	$I_S = 6.6 \text{ A}, V_{GS} = 0 \text{ V}$ $T_J = 25^{\circ}\text{C}$ $T_J = 100^{\circ}\text{C}$			0.90	1.6	V
					0.82		1
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V}, V_{DD} = 30 \text{ V}$ $I_{S} = 6.8 \text{ A}, d_{i}/d_{t} = 100 \text{ A}/\mu\text{s}$			260		ns
Charge Time	ta				130		1
Discharge Time	t _b				130		1
Reverse Recovery Charge	Q _{rr}				2.1	<u> </u>	μС


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


4. Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.


5. Switching characteristics are independent of operating junction temperatures.

6. $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{(BR)DSS}$ 7. $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{(BR)DSS}$

MARKING DIAGRAMS

Y = Year WW = Work Week G = Pb-Free Package

DPAK

ORDERING INFORMATION

Device	Package	Shipping [†]
NDD60N745U1-1G	IPAK (Pb-Free, Halogen-Free)	75 Units / Rail
NDD60N745U1-35G	IPAK (Pb-Free, Halogen-Free)	75 Units / Rali
NDD60N745U1T4G	DPAK (Pb-Free, Halogen-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

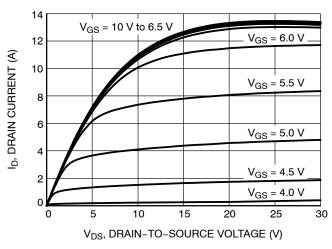


Figure 1. On-Region Characteristics

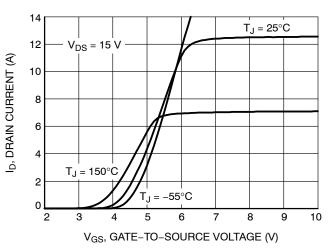


Figure 2. Transfer Characteristics

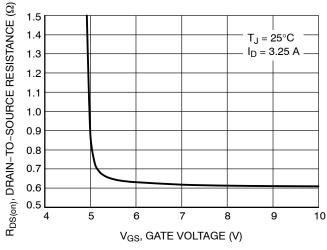


Figure 3. On-Resistance vs. Gate-to-Source Voltage

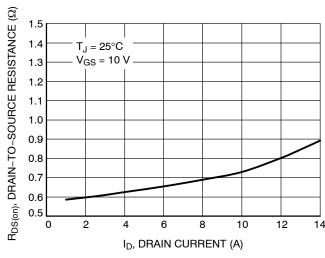


Figure 4. On-Resistance vs. Drain Current and

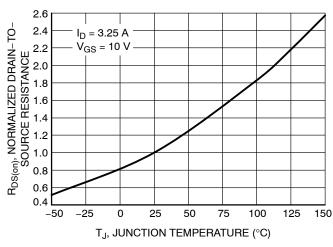


Figure 5. On–Resistance Variation with Temperature

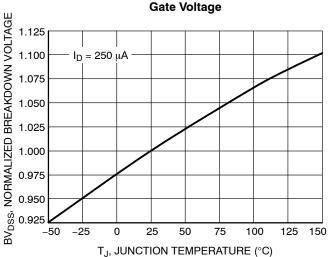
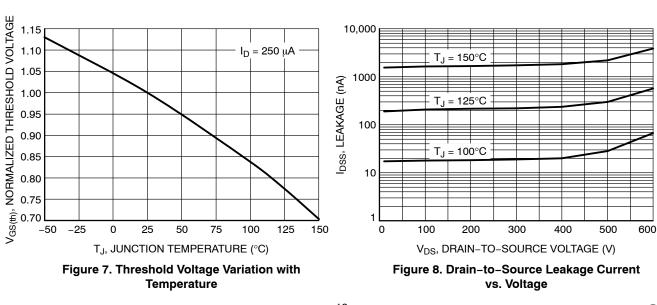



Figure 6. Breakdown Voltage Variation with Temperature

TYPICAL CHARACTERISTICS

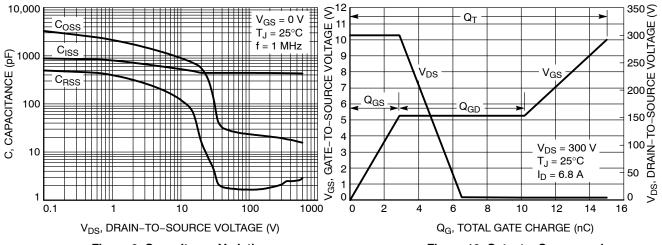


Figure 9. Capacitance Variation

Figure 10. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

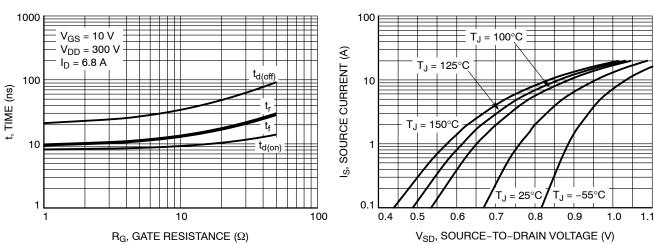


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

Figure 12. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

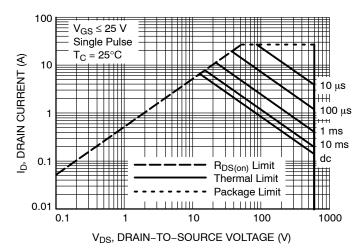
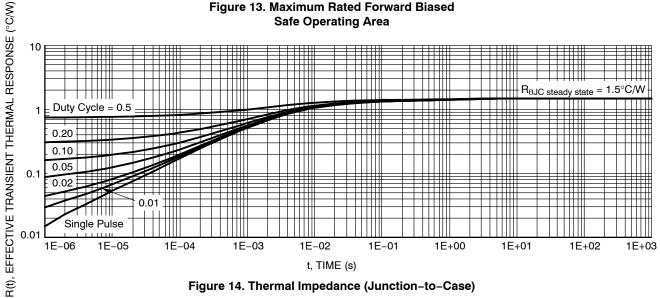
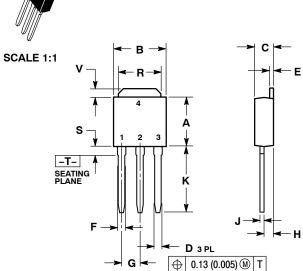


Figure 13. Maximum Rated Forward Biased Safe Operating Area




Figure 14. Thermal Impedance (Junction-to-Case)

MECHANICAL CASE OUTLINE

DATE 15 DEC 2010

STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

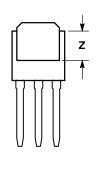
MT2

SOURCE

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

EMITTER

COLLECTOR

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

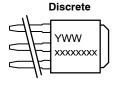
MARKING DIAGRAMS

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE


STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER

COLLECTOR

STYLE 4: PIN 1. CATHODE ANODE
 GATE

4. ANODE

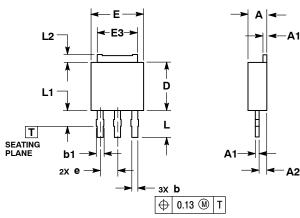
xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot Υ = Year WW = Work Week

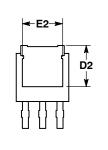
DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1

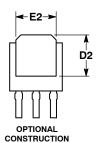
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS




3.5 MM IPAK, STRAIGHT LEAD


CASE 369AD **ISSUE B**

DATE 18 APR 2013

STYLE 4: PIN 1. CATHODE

3. GATE

2. ANODE

ANODE

- NOTES:
 1.. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. 2.. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD GATE OR MOLD FLASH.

	MILLIMETERS				
DIM	MIN	MAX			
Α	2.19	2.38			
A1	0.46	0.60			
A2	0.87	1.10			
b	0.69	0.89			
b1	0.77	1.10			
D	5.97	6.22			
D2	4.80				
E	6.35	6.73			
E2	4.57	5.45			
E3	4.45	5.46			
е	2.28	BSC			
L	3.40	3.60			
L1		2.10			
L2	0.89	1.27			

GENERIC MARKING DIAGRAMS*

Integrated

STYL	Ε	1	:	
PIN	1			RA

4. STYLE 5:

PIN 1. GATE

ASE 2. COLLECTOR 3. **EMITTER**

ANODE
 CATHODE

ANODE

COLLECTOR

STYLE 2: PIN 1. GATE

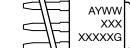
STYLE 6:

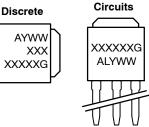
PIN 1. MT1

MT2
 GATE

MT2

2. DRAIN 3. SOURCE DRAIN


STYLE 3: PIN 1. ANODE 2. CATHODE


STYLE 7:

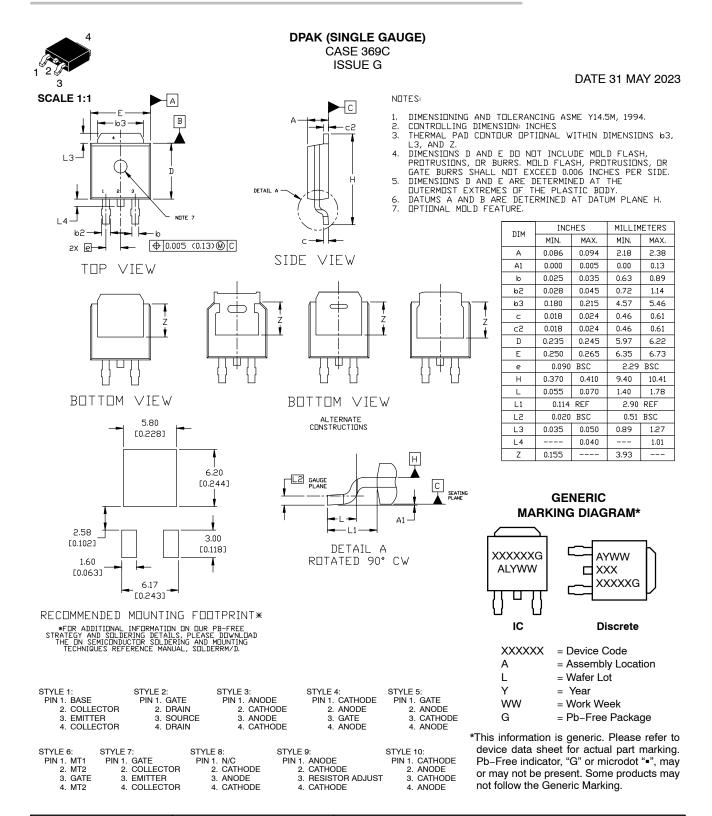
3. ANODE CATHODE

PIN 1. GATE 2. COLLECTOR 3. EMITTER

COLLECTOR

XXXXXX = Device Code

Α = Assembly Location


L = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCHMENT NUMBER: 1 001/01/02/10D		Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	, ,
DESCRIPTION	3.5 MM IPAK STRAIGHT I	5 MM IPAK STRAIGHT I FAD	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales