20 V, 5 A, Low V_{CE(sat)} PNP Transistor

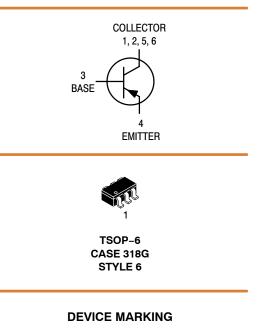
NSS20300MR6

onsemi's e²PowerEdge family of low V_{CE(sat)} transistors are miniature surface mount devices featuring ultra low saturation voltage (V_{CE(sat)}) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-20	Vdc
Collector-Base Voltage	V _{CBO}	-30	Vdc
Emitter-Base Voltage	V _{EBO}	-6.0	Vdc
Collector Current – Continuous	۱ _C	-3.0	Adc
Collector Current - Peak	I _{CM}	-5.0	А
Electrostatic Discharge	ESD	HBM Class 3B MM Class C	


Characteristic	Symbol	Max	Unit
Total Device Dissipation, T _A = 25°C Derate above 25°C	P _D (Note 1)	545 4.3	mW mW/°C
Thermal Resistance, Junction-to- Ambient	$R_{\theta JA}$ (Note 1)	230	°C/W
Total Device Dissipation $T_A = 25^{\circ}C$	P _D (Note 2)	1.06	W
Derate above 25°C		8.5	mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 2)	118	°C/W
Thermal Resistance, Junction-to-Lead #1	R _{θJL} (Note 1) R _{θJL} (Note 2)	48 40	°C/W °C/W
Total Device Dissipation (Single Pulse < 10 sec.)	P _{Dsingle} (Note 2)	1.75	W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

THERMAL CHARACTERISTICS

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

FR-4 @ 100 mm², 2 oz copper traces.
 FR-4 @ 500 mm², 2 oz copper traces.

20 VOLTS **5.0 AMPS** $\begin{array}{l} \text{PNP LOW V}_{\text{CE(sat)}} \text{ TRANSISTOR} \\ \text{EQUIVALENT R}_{\text{DS(on)}} \text{ 78 m} \Omega \end{array}$

VS1 = Specific Device Code

= Date Code Μ

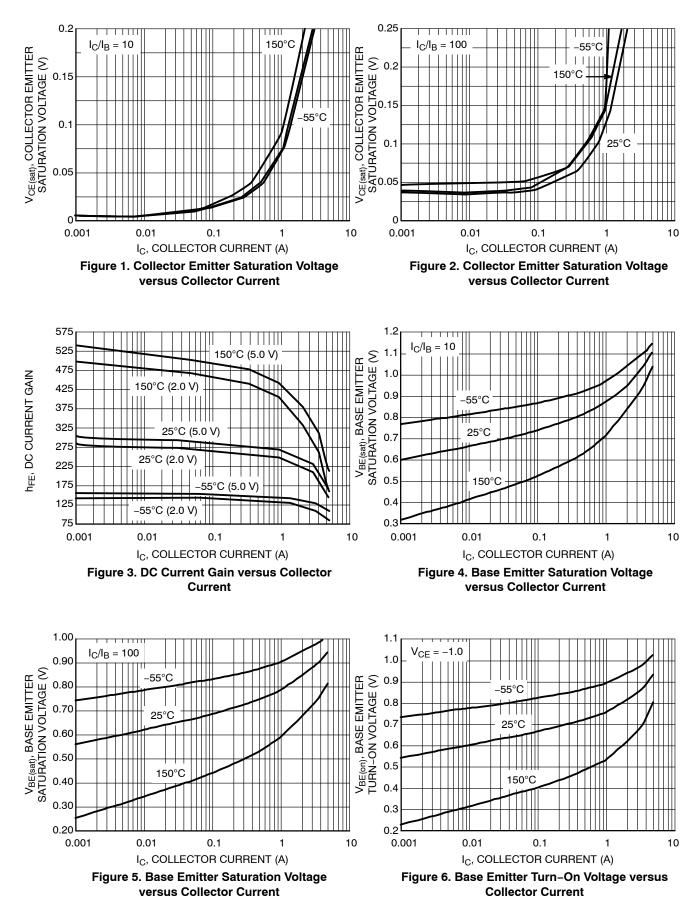
= Pb-Free Package

(Note: Microdot may be in either location)

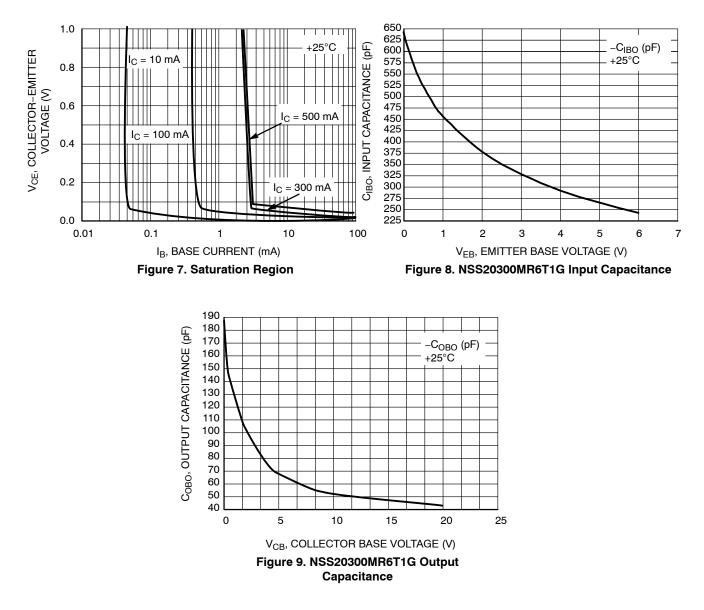
ORDERING INFORMATION

Device	Package	Shipping [†]
NSS20300MR6T1G	TSOP-6 (Pb-Free)	3000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


NSS20300MR6

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)


Characteristic	Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS	•		•		
Collector – Emitter Breakdown Voltage $(I_C = -10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-20		_	Vdc
Collector – Base Breakdown Voltage $(I_C = -0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	-30		_	Vdc
Emitter – Base Breakdown Voltage $(I_E = -0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	-6.0		_	Vdc
Collector Cutoff Current ($V_{CB} = -20$ Vdc, $I_E = 0$)	I _{CBO}	_		-0.1	μAdc
Collector-Emitter Cutoff Current (V _{CES} = -20 Vdc)	I _{CES}	-		-0.1	μAdc
Emitter Cutoff Current (V _{EB} = -6.0 Vdc)	I _{EBO}	_		-0.1	μAdc
ON CHARACTERISTICS	•		•		
DC Current Gain ⁽¹⁾ ($I_C = -1.0 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -1.5 \text{ A}, V_{CE} = -2.0 \text{ V}$) ($I_C = -2.0 \text{ A}, V_{CE} = -2.0 \text{ V}$)	h _{FE}	100 100 100	230	_ 400 _	
Collector – Emitter Saturation Voltage (Note 3) ($I_C = -0.10 \text{ A}, I_B = -0.010 \text{ A}$) ($I_C = -1.0 \text{ A}, I_B = -0.010 \text{ A}$) ($I_C = -2.0 \text{ A}, I_B = -0.02 \text{ A}$)	V _{CE(sat)}	- - -	-0.010 -0.127 -0.250	-0.015 -0.145 -0.320	V
Base – Emitter Saturation Voltage (Note 3) $(I_C = -1A, I_B = -0.010 A)$	V _{BE(sat)}	_	_	-0.85	V
Base – Emitter Turn–on Voltage (Note 3) ($I_C = -2.0 \text{ A}, V_{CE} = -3.0 \text{ V}$)	V _{BE(on)}	_	-	-0.875	V
Cutoff Frequency (I _C = -100 mA, V _{CE} = -5.0 V, f = 100 MHz)	f _T	100	_	_	MHz
Input Capacitance (V _{EB} = -0.5 V, f = 1.0 MHz)	C _{IBO}	-		650	pF
Output Capacitance (V _{CB} = -3.0 V, f = 1.0 MHz)	C _{OBO}	-		100	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Pulsed Condition: Pulse Width ≤ 300 µsec, Duty Cycle ≤ 2%.

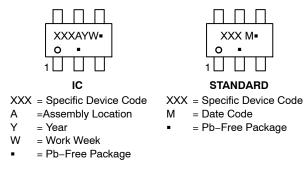
NSS20300MR6

NSS20300MR6

TSOP-6 3.00x1.50x0.90, 0.95P **CASE 318G ISSUE W** DATE 26 FEB 2024 NDTES D DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. 1. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM 2. З. 6 5 4 LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. MATERIAL. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE Ē1 NOTE 5 1 3 MILLIMETERS H DIM MIN NΠΜ MAX e -2 GAUGE PLANE 0.90 1.00 1.10 А TOP VIEW A1 0.01 0.06 0.10 0.80 0.90 1.00 Α2 -A2 0.25 0.38 0.50 b SEATING PLANE Μ Ċ 0.10 0.18 0.26 С 0.05 C 3.00 DETAIL Z D 2.90 3.10 SCALE 3:1 F 2.50 A1-2.75 3.00 SIDE VIEW PLANE Ε1 1.30 1.50 1.70 0.85 0.95 1.05 е 0.20 0.40 DETAIL Z L 0.60 L2 0.25 BSC М 0° 10° 6X --0.60 END VIEW 6X -0.95 3.20 1 -0.95 PITCH RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download th e EN Semiconductor Soldering and Mounting Techniques Reference manual, SELDERRM/D.

DUSEU


DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	RIPTION: TSOP-6 3.00x1.50x0.90, 0.95P		PAGE 1 OF 2	
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.				

onsemí.

TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G ISSUE W

DATE 26 FEB 2024

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	2. GND 3. D(OUT)– 4. D(IN)– 5. VBUS	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN		LE 16: N 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	: TSOP-6 3.00x1.50x0.90, 0.95P		PAGE 2 OF 2	
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>