ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET – Single N-Channel, Small Signal, XLLGA3, 0.62 x 0.62 x 0.4 mm 12 V, 384 mA

Features

- Single N-Channel MOSFET
- Ultra Small and Thin Package (0.62 x 0.62 x 0.4 mm)
- Low R_{DS(on)} Solution in 0.62 x 0.62 mm Package
- 1.8 V Gate Voltage Rating
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Small Signal Load Switch
- Analog Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Products

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V_{DSS}	12	V
Gate-to-Source Voltage			V _{GS}	±8	V
Continuous Drain Current (Note 1)			I _D	384	mA
Current (Note 1)	State	T _A = 85°C		277	
	t ≤ 5 s	T _A = 25°C		413	
Power Dissipa- tion (Note 1)	Steady State	T _A = 25°C	P _D	120	mW
	t ≤ 5 s	T _A = 25°C		140	
Pulsed Drain Current $t_p = 10 \mu s$		I _{DM}	115	Α	
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			I _S	157	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

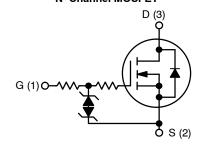
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	1040	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 1)	$R_{\theta JA}$	900	

 Surface Mounted on FR4 Board using the minimum recommended pad size, (or 2 mm²), 1 oz Cu.

1

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


ON Semiconductor®

www.onsemi.com

MOSFET

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
	0.48 Ω @ 4.5 V	
	0.54 Ω @ 3.7 V	
12 V	0.60 Ω @ 3.3 V	384 mA
	0.80 Ω @ 2.5 V	
	1.90 Ω @ 1.8 V	

N-Channel MOSFET

MARKING DIAGRAM

XLLGA3 CASE 713AE

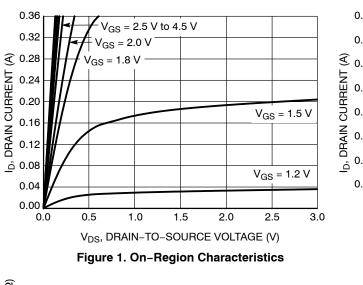
E = Specific Device Code

M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNS3C94NZT5G	XLLGA3 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

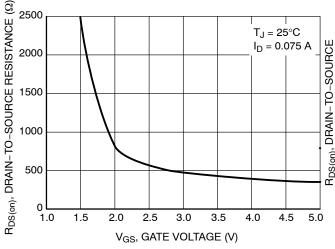

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		12			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 250 μA, ref to 25°C			11		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 9.6 V	T _J = 25°C			100	nA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±10 V				±10	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, I _D = 250 μA	0.4		1.0	V
Negative Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				0.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.5 V	, I _D = 100 mA		0.35	0.48	Ω
		V _{GS} = 3.7 \	/, I _D = 75 mA		0.40	0.54	1
		V _{GS} = 3.3 \	/, I _D = 75 mA		0.43	0.60	
		$V_{GS} = 2.5 \text{ V, I}_{D} = 50 \text{ mA}$ $V_{GS} = 1.8 \text{ V, I}_{D} = 20 \text{ mA}$			0.55	0.80	
					1.0	1.9	
		V _{GS} = 1.5 \	/, I _D = 10 mA		1.8		
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 100 mA			0.6		S
Source-Drain Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 100 mA			0.76	1.0	V
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz,}$ $V_{DS} = 9.6 \text{ V}$			35		pF
Output Capacitance	C _{OSS}				6.0		
Reverse Transfer Capacitance	C _{RSS}				4.1		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 9.6 V, I_{D} = 100 mA			0.6		nC
Threshold Gate Charge	Q _{G(TH)}				0.1		
Gate-to-Source Charge	Q_{GS}				0.1		
Gate-to-Drain Charge	Q_{GD}				0.1		
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 3)			-			
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 9.6 V, I_{D} = 100 mA, R_{G} = 2 Ω			7.0		ns
Rise Time	t _r				6.3		
Turn-Off Delay Time	t _{d(OFF)}				152		
Fall Time	t _f				80		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS


0.40 0.35 VDS = 10 V TJ = -55°C TJ = 125°C

0.30 VDS = 10 V TJ = 25°C

0.30

0.20
0.15
0.10
0.05
0 0.10
0.05
VGS, GATE-TO-SOURCE VOLTAGE (V)

Figure 2. Transfer Characteristics

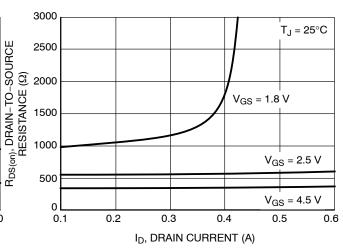
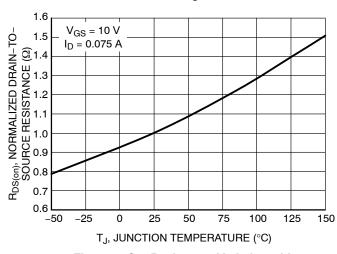



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

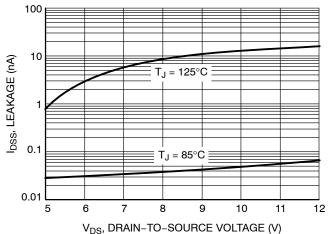
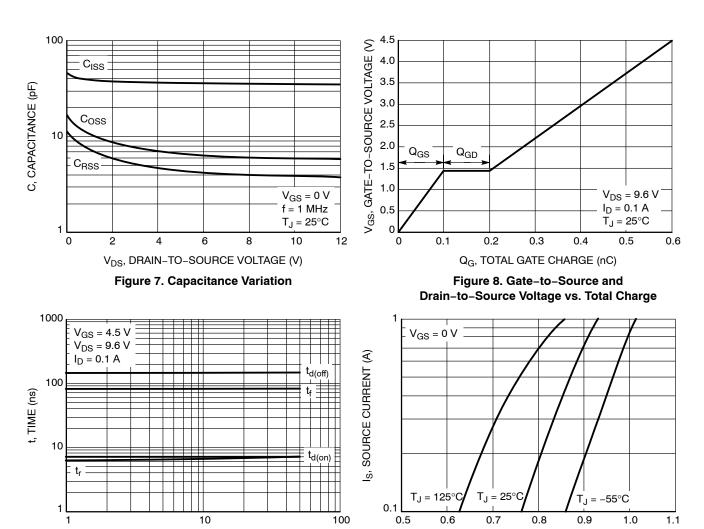



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

 $\label{eq:RG} \textbf{R}_{G},\, \textbf{GATE}\,\, \textbf{RESISTANCE}\,\,(\Omega)$ Figure 9. Resistive Switching Time Variation vs. Gate Resistance

 $\label{eq:VSD} V_{SD}, \text{SOURCE-TO-DRAIN VOLTAGE (V)}$ Figure 10. Diode Forward Voltage vs. Current

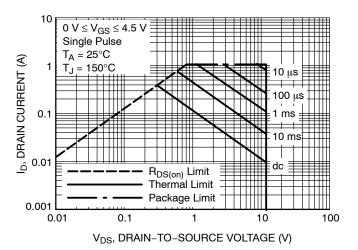
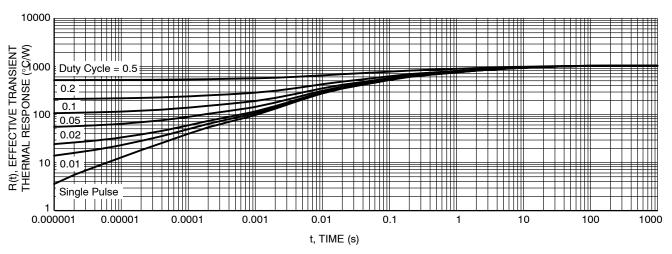
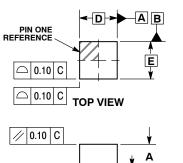
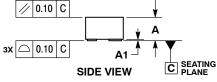
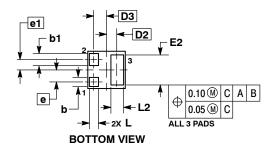


Figure 11. Maximum Rated Forward Biased Safe Operating Area

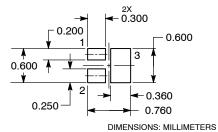
TYPICAL CHARACTERISTICS


Figure 12. FET Thermal Response

PACKAGE DIMENSIONS

XLLGA3, 0.62x0.62 CASE 713AE ISSUE O



NOTES

- DIMENSIONING AND TOLERANCING PER
 ASME V14 5M 1994
- ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.340	0.440	
A1	0.000	0.030	
b	0.100	0.200	
b1	0.150	0.250	
D	0.620 BSC		
D2	0.175 BSC		
D3	0.205 BSC		
Е	0.620 BSC		
E2	0.400	0.600	
е	0.200 BSC		
e1	0.175 BSC		
L	0.090	0.210	
L2	0.110	0.310	

RECOMMENDED SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ill are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative