High-Power NPN Silicon Transistor

High–power NPN silicon transistors are for use in power amplifier and switching circuits applications.

Features

- Low Collector–Emitter Saturation Voltage $V_{CE(sat)} = 0.75 \text{ Vdc (Max)} @ I_C = 10 \text{ Adc}$
- Pb-Free Package is Available*

MAXIMUM RATINGS (Note 1) ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	V_{CB}	60	Vdc
Collector Current – Continuous (Note 2)	I _C	30	Adc
Base Current	Ι _Β	7.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	200 1.14	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\theta_{\sf JC}$	0.875	°C/W
Thermal Resistance, Case-to-Ambient	$\theta_{\sf CA}$	34	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Indicates JEDEC Registered Data.
- 2. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

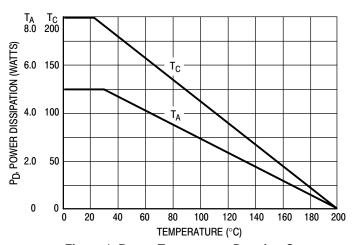


Figure 1. Power Temperature Derating Curve

ON Semiconductor®

http://onsemi.com

30 AMPERES POWER TRANSISTOR NPN SILICON 60 VOLTS, 200 WATTS

TO-204AA (TO-3) CASE 1-07 STYLE 1

MARKING DIAGRAM

2N5302 = Device Code
G = Pb-Free Package
A = Location Code

YY = Year WW = Work Week MEX = Country of Origin

ORDERING INFORMATION

Device	Package	Shipping
2N5302	TO-204	100 Units/Tray
2N5302G	TO-204 (Pb-Free)	100 Units/Tray

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

	Characteristic	Sy	mbol	Mi	n	Ма	Х	Unit
OFF CHARACTERIST	ICS (Note 3)	ı					1	
Collector–Emitter Sustaining Voltage (Note 4) (I _C = 200 mAdc, I _B = 0)			V _{CEO(sus)} 60		_			Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)			I _{CEO} –			5.0		mAdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 1.5 Vdc)			I _{CEX} -			1.0		mAdc
Collector Cutoff Curren (V _{CE} = 60 Vdc, V _{EB}	nt _{B(Off)} = 1.5 Vdc, T _C = 150°C)	ı	I _{CEX} –			10		mAdc
Collector Cutoff Curren (V _{CB} = 80 Vdc, I _E =		I	СВО	-		1.)	mAdc
Emitter Cutoff Current	(V _{BE} = 5.0 Vdc, I _C = 0)	I	EBO	_		5.)	mAdc
ON CHARACTERISTIC	cs	•			•		•	
DC Current Gain (Note 4) *($I_{C} = 1.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) *($I_{C} = 15 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) ($I_{C} = 30 \text{ Adc}$, $V_{CE} = 4.0 \text{ Vdc}$)			h _{FE} 40 15 5.0		5	- 60 -)	-
*Collector–Emitter Saturation Voltage (Note 4) (I_C = 10 Adc, I_B = 1.0 Adc) (I_C = 20 Adc, I_B = 2.0 Adc)2 (I_C = 30 Adc, I_B = 6.0 Adc)			V _{CE(sat)}			0.7 2.1 3.1	0	Vdc
*Base Emitter Saturation Voltage (Note 4) $ (I_C = 10 \text{ Adc}, I_B = 1.0 \text{ Adc}) $ $ (I_C = 15 \text{ Adc}, I_B = 1.5 \text{ Adc}) $ $ (I_C = 20 \text{ Adc}, I_B = 2.0 \text{ Adc}) $			V _{BE} (sat)			1. 1. 2.	3	Vdc
*Base–Emitter On Voltage (Note 4) (I _C = 15 Adc, V _{CE} = 2.0 Vdc) (I _C = 30 Adc, V _{CE} = 4.0 Vdc)			V _{BE(on)} –			1.7 3.0		Vdc
DYNAMIC CHARACTE	ERISTICS (Note 3)							
Current-Gain - Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)			f _T 2.0		.0 –			MHz
Small-Signal Current Gain (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)			h _{fe} 40		40 –			-
SWITCHING CHARAC	TERISTICS (Note 3)					_		
Rise Time		t _r – t _s – t _f –		- 1.0		1.0	μs	
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_C = 10 \text{ Adc}, I_{B1} = I_{B2} = 1.0 \text{ Adc})$			2.0	μs			
Fall Time					_		1.0	μs

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Indicates JEDEC Registered Data.
 Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

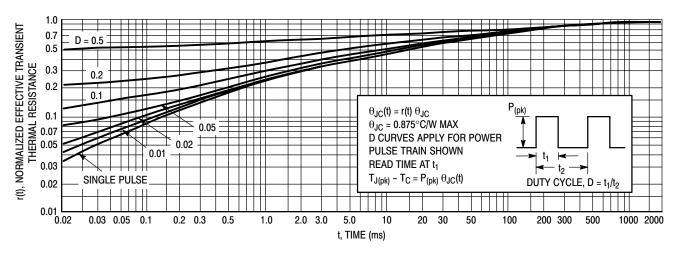


Figure 4. Thermal Response

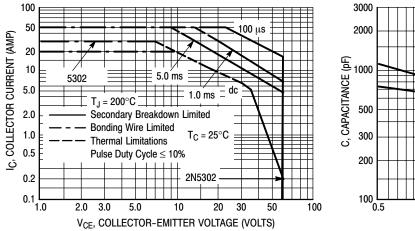


Figure 5. Active-Region Safe Operating Area

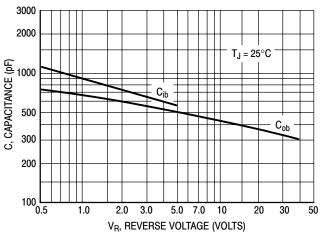


Figure 6. Capacitance versus Voltage

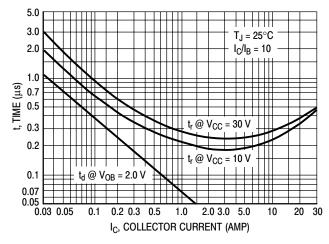


Figure 7. Turn-On Time

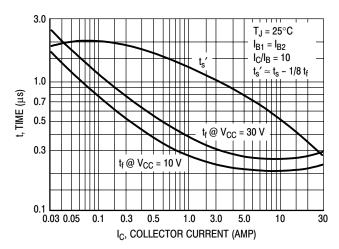


Figure 8. Turn-Off Time

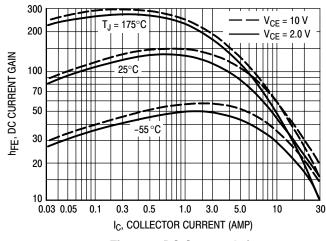


Figure 9. DC Current Gain

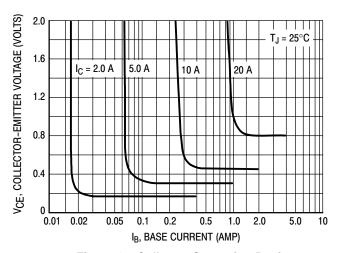


Figure 10. Collector Saturation Region

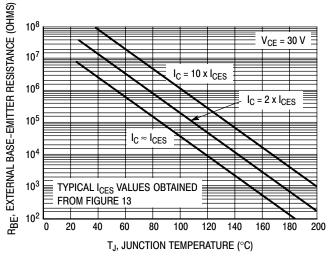


Figure 11. Effects of Base-Emitter Resistance

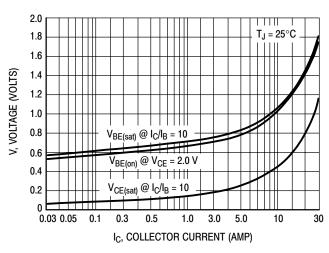


Figure 12. "On" Voltages

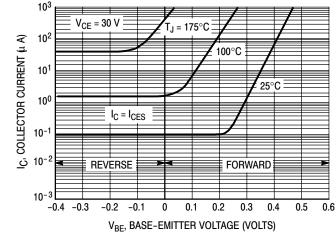


Figure 13. Collector Cut-Off Region

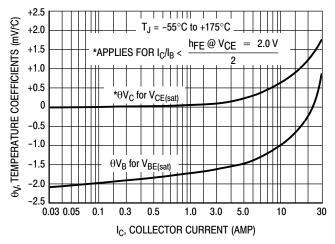
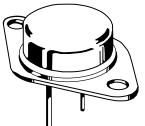
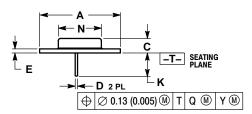
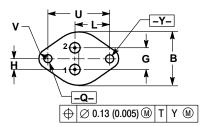



Figure 14. Temperature Coefficients





TO-204 (TO-3) **CASE 1-07 ISSUE Z**

DATE 05/18/1988

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.550 REF		39.37	REF	
В		1.050		26.67	
С	0.250	0.335	6.35	8.51	
D	0.038	0.043	0.97	1.09	
Ε	0.055	0.070	1.40	1.77	
G	0.430	BSC	10.92 BSC		
Н	0.215 BSC		5.46 BSC		
K	0.440	0.480	11.18	12.19	
L	0.665	BSC	16.89 BSC		
N		0.830		21.08	
Q	0.151	0.165	3.84	4.19	
U	1.187	BSC	30.15 BSC		
٧	0.131	0.188	3.33	4.77	

STYLE I:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. BASE	PIN 1. GATE	PIN 1. GROUND	PIN 1. CATHODE
2. EMITTER	2. COLLECTOR	2. SOURCE	2. INPUT	2. EXTERNAL TRIP/DELAY
CASE: COLLECTOR	CASE: EMITTER	CASE: DRAIN	CASE: OUTPUT	CASE: ANODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE #1	PIN 1. ANODE #1	
2. EMITTER	2. OPEN	2. CATHODE #2	ANODE #2	
CASE: COLLECTOR	CASE: CATHODE	CASE: ANODE	CASE: CATHODE	

ON Semiconductor and U are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales