onsemi

DATA SHEET www.onsemi.com

PIN 3

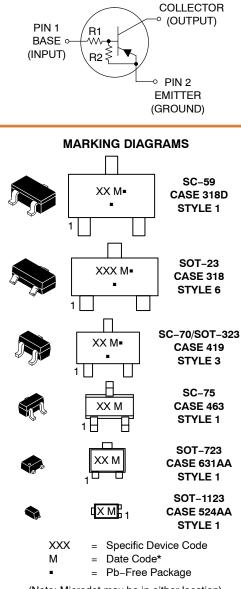
Digital Transistors (BRT) R1 = 2.2 k Ω , R2 = 2.2 k Ω

PNP Transistors with Monolithic Bias Resistor Network

MUN2131, MMUN2131L, MUN5131, DTA123EE, DTA123EM3, NSBA123EF3

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

Features


- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count

MAXIMUM RATINGS (T_A = 25°C)

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Rating	Symbol	Max	Unit	
Collector-Base Voltage	V _{CBO}	50	Vdc	
Collector-Emitter Voltage	V _{CEO}	50	Vdc	
Collector Current – Continuous	Ι _C	100	mAdc	
Input Forward Voltage	V _{IN(fwd)}	12	Vdc	
Input Reverse Voltage	V _{IN(rev)}	10	Vdc	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

PIN CONNECTIONS

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

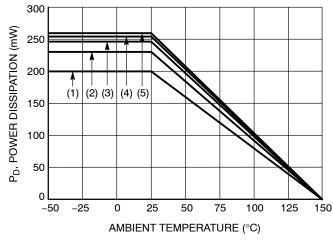

See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet.

Table 1. ORDERING INFORMATION

Device	Part Marking	Package	Shipping [†]
MUN2131T1G	6H	SC–59 (Pb–Free)	3000 / Tape & Reel
MMUN2131LT1G, NSVMMUN2131LT1G*	A6H	SOT-23 (Pb-Free)	3000 / Tape & Reel
MUN5131T1G, NSVMUN5131T1G*	6H	SC-70/SOT-323 (Pb-Free)	3000 / Tape & Reel
DTA123EET1G	6H	SC–75 (Pb–Free)	3000 / Tape & Reel
DTA123EM3T5G, NSVDTA123EM3T5G*	6H	SOT-723 (Pb-Free)	8000 / Tape & Reel
NSBA123EF3T5G	P (180°)**	SOT-1123 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

** (xx°) = Degree rotation in the clockwise direction.

SC-75 and SC-70/SOT323; Minimum Pad
SC-59; Minimum Pad
SOT-23; Minimum Pad
SOT-1123; 100 mm², 1 oz. copper trace
SOT-723; Minimum Pad

Figure 1. Derating Curve

Table 2. THERMAL CHARACTERISTICS

Characteristic		Symbol	Мах	Unit
THERMAL CHARACTERISTICS (SC-59) (MUN2131)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	230 338 1.8 2.7	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	$R_{\theta JA}$	540 370	°C/W
Thermal Characterization Parameter, Junction to Lead Thermal Characterization Parameter, Junction to Top		$\Psi_{JL} \ \Psi_{JT}$	264 287	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTICS (SOT-23) (MMUN2131L)			-	
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	246 400 2.0 3.2	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	508 311	°C/W
Thermal Characterization Parameter, Junction to Lead Thermal Characterization Parameter, Junction to Top		$\Psi_{JL} \ \Psi_{JT}$	174 208	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
THERMAL CHARACTERISTICS (SC-70/SOT-323) (MUN5131)			-	
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	202 310 1.6 2.5	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	618 403	°C/W
Thermal Characterization Parameter, Junction to Lead Thermal Characterization Parameter, Junction to Top		Ψ _{JL} Ψ _{JT}	280 332	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C
THERMAL CHARACTERISTICS (SC-75) (DTA123EE)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	200 300 1.6 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	600 400	°C/W
Thermal Characterization Parameter, Junction to Lead Thermal Characterization Parameter, Junction to Top		$\Psi_{JL} \ \Psi_{JT}$	277 245	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C
THERMAL CHARACTERISTICS (SOT-723) (DTA123EM3)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	(Note 1) (Note 2) (Note 1) (Note 2)	P _D	260 600 2.0 4.8	mW mW/°C

1. FR-4 @ Minimum Pad.

FR-4 @ 1.0 x 1.0 Inch Pad.
FR-4 @ 100 mm², 1 oz. copper traces, still air.
FR-4 @ 500 mm², 1 oz. copper traces, still air.

Table 2. THERMAL CHARACTERISTICS

Characteristic		Symbol	Мах	Unit
THERMAL CHARACTERISTICS (SOT-723) (DTA123EM3)				
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R_{\thetaJA}	480 205	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C
THERMAL CHARACTERISTICS (SOT-1123) (NSBA123EF3)				
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	(Note 3) (Note 4) (Note 3) (Note 4)	P _D	254 297 2.0 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 3) (Note 4)	R_{\thetaJA}	493 421	°C/W
Thermal Characterization Parameter, Junction to Lead Thermal Characterization Parameter, Junction to Top		Ψ _{JL} Ψ _{JT}	110 85	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +150	°C

1. FR-4 @ Minimum Pad.

2. FR-4 @ 1.0 x 1.0 Inch Pad.

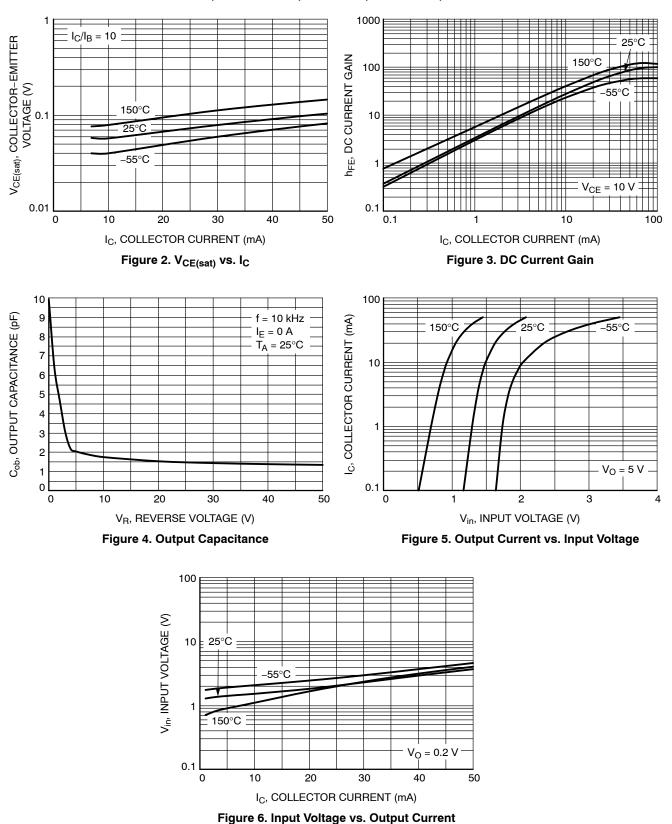
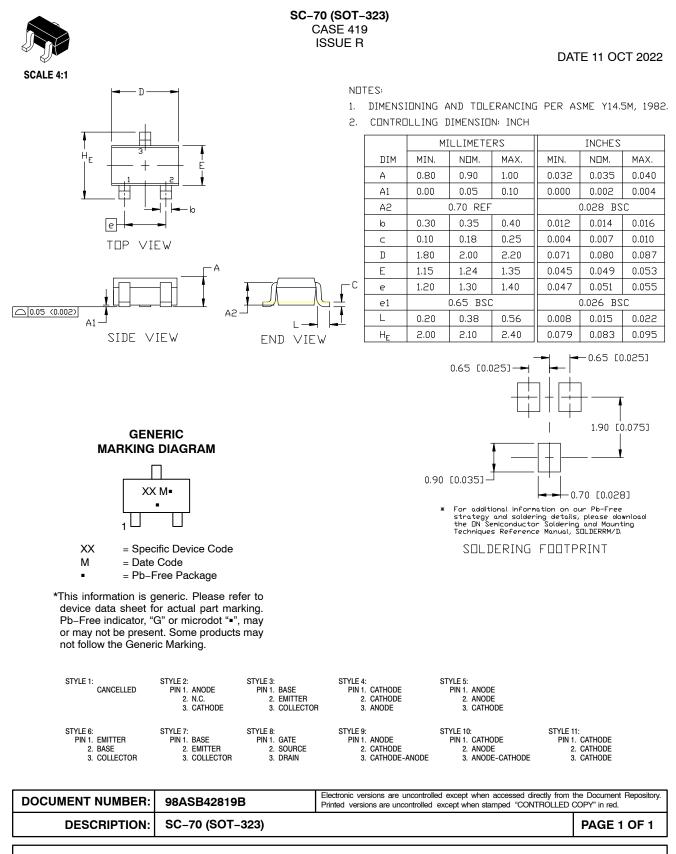

3. FR-4 @ 100 mm², 1 oz. copper traces, still air. 4. FR-4 @ 500 mm², 1 oz. copper traces, still air.

Table 3. ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	-	_	100	nAdc
Collector–Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	_	500	nAdc
Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	I _{EBO}	-	_	2.3	mAdc
Collector-Base Breakdown Voltage $(I_{C} = 10 \ \mu A, I_{E} = 0)$	V _(BR) CBO	50	_	-	Vdc
Collector–Emitter Breakdown Voltage (Note 5) $(I_{C} = 2.0 \text{ mA}, I_{B} = 0)$	V _(BR) CEO	50	_	-	Vdc
ON CHARACTERISTICS			-		
DC Current Gain (Note 5) ($I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$)	h _{FE}	8.0	15	-	
Collector–Emitter Saturation Voltage (Note 5) $(I_{C} = 10 \text{ mA}, I_{B} = 5.0 \text{ mA})$	V _{CE(sat)}	_	_	0.25	Vdc
Input Voltage (off) $(V_{CE} = 5.0 \text{ V}, I_C = 100 \ \mu\text{A})$	V _{i(off)}	-	1.2	0.5	Vdc
Input Voltage (on) $(V_{CE} = 0.3 \text{ V}, I_C = 20 \text{ mA})$	V _{i(on)}	2.0	1.7	-	Vdc
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 2.5 V, R _L = 1.0 k Ω)	V _{OL}	_	_	0.2	Vdc
Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.25 V, R _L = 1.0 kΩ)	V _{OH}	4.9	_	-	Vdc
Input Resistor	R1	1.5	2.2	2.9	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle $\leq 2\%$.

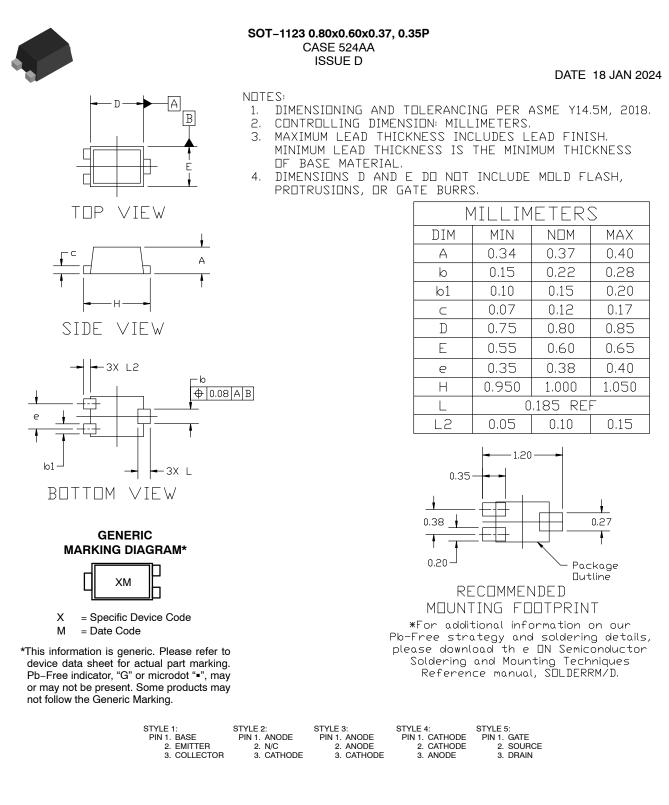
www.onsemi.com

TYPICAL CHARACTERISTICS MUN2131, MMUN2131L, MUN5131, DTA123EE, DTA123EM3

onsemi

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS


SC75-3 1.60x0.80x0.80, 1.00P **CASE 463 ISSUE H** DATE 01 FEB 2024 NOTES: Α D DIMENSIONING AND TOLERANCING CONFORM 1. В TO ASME Y14.5-2018. ALL DIMENSION ARE IN MILLIMETERS. 2. F MILLIMETERS F DIM MIN. MAX. NOM. 0.70 0.800.90 А 3X b Α1 0.00 0.05 0.10 \oplus 0.20 \oplus C A B е A2 0.80 REF. 0.15 0.20 b 0.30 TOP VIEW С 0.10 0.15 0.25 A2 D 1.55 1.60 1.65 E 1.50 1.60 1.70 E1 0.70 0.80 0.90 С 1.00 BSC е SEATING Ċ A1 L 0.20 PLANE 0.10 0.15 -0.356 END VIEW SIDE VIEW GENERIC **MARKING DIAGRAM*** 1.803 0.787XXM XX = Specific Device Code Μ = Date Code 0.508 = Pb-Free Package 1.000 *This information is generic. Please refer to device data sheet for actual part marking. RECOMMENDED MOUNTING FOOTPRINT* Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY not follow the Generic Marking. AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES STYLE 3: PIN 1. ANODE 2. ANODE STYLE 1: PIN 1. BASE 2. EMITTER STYLE 2: PIN 1. ANODE 2. N/C REFERENCE MANUAL, SOLDERRM/D. 3. COLLECTOR 3. CATHODE 3. CATHODE STYLE 4: STYLE 5: PIN 1. CATHODE 2. CATHODE PIN 1. GATE 2. SOURCE 3. ANODE 3. DRAIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB15184C Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SC75-3 1.60x0.80x0.80, 1.00P PAGE 1 OF 1 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

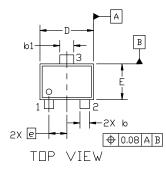
```
www.onsemi.com
```

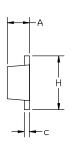
ONSEM¹.

DOCUMENT NUMBER:	98AON23134D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-1123 0.80x0.60x0.37,	SOT-1123 0.80x0.60x0.37, 0.35P	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

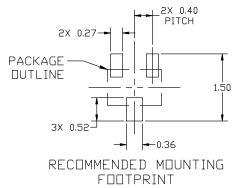
MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

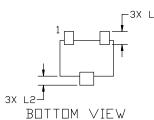

SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E


DATE 24 JAN 2024

onsemi

NDTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. 1.
- 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH, MINIMUM З. LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.



SIDE VIEW

	MILLIMETERS				
DIM	MIN.	NDM.	MAX.		
A 0.45		0.50	0.55		
b	0.15	0.21	0.27		
b1	0.25	0.31	0.37		
С	0.07	0.12	0.17		
D	1.15	1.20	1.25		
E	0.75	0.80	0.85		
e		0.40 BSC			
Н	1.15	1.20	1.25		
L	0.29 REF				
L2	0.15 0.20		0.25		

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE	STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 4: PIN 1. CATH 2. CATH 3. ANOE	ODE 2. SOURCE			
DOCUMENT NUM	BER: 98AO	N12989D			ed except when accessed directly from th except when stamped "CONTROLLED CO		Repository.
DESCRIPTION: SOT-723 1.20x0.80x0.50, 0.40P PAGE 1					OF 1		
					s in the United States and/or other countr		

purpose, nor does onsemi assume an yiability arising out of the application or use of any product or circuit, and specificative displants any and that it is in the interview of the application or use of any product or circuit, and specification and any any parameters and any parameters any paramet special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>