NPN Silicon Power Darlington Transistors The Darlington transistors are designed for high-voltage power switching in inductive circuits. #### **Features** • These Devices are Pb-Free and are RoHS Compliant ## **Applications** - Small Engine Ignition - Switching Regulators - Inverters - Solenoid and Relay Drivers - Motor Controls ## **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------|-----------| | Collector-Emitter Voltage | V _{CEO(sus)} | 400 | Vdc | | Collector-Emitter Voltage | V _{CEV} | 800 | Vdc | | Emitter-Base Voltage | V _{EB} | 8 | Vdc | | Collector Current – Continuous – Peak (Note 1) | I _C | 8
16 | Adc | | Base Current – Continuous – Peak (Note 1) | I _B
I _{BM} | 2.5
5 | Adc | | Total Device Dissipation @ T _A = 25°C Derate above 25°C | P _D | 2
0.016 | W
W/°C | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 100
0.8 | W
W/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to +150 | °C | ## THERMAL CHARACTERISTICS | Characteristics | Symbol | Max | Unit | |--|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{ heta JC}$ | 1.25 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | | Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds | T_L | 275 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. ## ON Semiconductor® http://onsemi.com ## POWER DARLINGTON **TRANSISTORS** 8 AMPERES, 400 VOLTS **100 WATTS** ## **MARKING DIAGRAM** 1 D²PAK **CASE 418B** STYLE 1 B5742 = Specific Device Code = Assembly Location = Year WW = Work Week = Pb-Free Package ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------|---------------------------------|-----------------------| | MJB5742T4G | D ² PAK
(Pb-Free) | 800 / Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## FLECTRICAL CHARACTERISTICS (T. | ELECTRICAL CHARAC | TERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) | _ | | | | | |---|---|----------------------|--------------|-------------|-------------------|----------| | | Characteristic | Symbol | Min | Тур | Max | Unit | | OFF CHARACTERISTICS (| (Note 2) | | | | | | | Collector-Emitter Sustainin | V _{CEO(sus)} | 400 | - | - | Vdc | | | | CEV = Rated Value, V _{BE(off)} = 1.5 Vdc)
_{DE(off)} = 1.5 Vdc, T _C = 100°C) | I _{CEV} | -
- | -
- | 1
5 | mAdc | | Emitter Cutoff Current (VEE | ₃ = 8 Vdc, I _C = 0) | I _{EBO} | - | - | 75 | mAdc | | SECOND BREAKDOWN | | | | | | | | Second Breakdown Collect | tor Current with Base Forward Biased | I _{S/b} | See Figure 6 | | | | | Clamped Inductive SOA wi | th Base Reverse Biased | RBSOA | | See F | igure 7 | | | ON CHARACTERISTICS (N | Note 2) | | | | | | | DC Current Gain ($I_C = 0.5 \text{ A}$)
($I_C = 4 \text{ Adc}$, $V_{CE} = 5 \text{ Vdc}$) | h _{FE} | 50
200 | 100
400 | _
_ | _ | | | Collector–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, I_C = 100°C) | | V _{CE(sat)} | -
-
- | -
-
- | 2
3
2.2 | Vdc | | Base–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, I_C = 100°C) | | V _{BE(sat)} | -
-
- | -
-
- | 2.5
3.5
2.4 | Vdc | | Diode Forward Voltage (Note 3) (I _F = 5 Adc) | | V _f | - | - | 2.5 | Vdc | | SWITCHING CHARACTER | ISTICS | | | | | | | Typical Resistive Load (T | able 1) | | | | | | | Delay Time | | t _d | _ | 0.04 | - | μs | | Rise Time | (V _{CC} = 250 Vdc, I _{C(pk)} = 6 A | t _r | - | 0.5 | - | μs | | Storage Time | l _{B1} = l _{B2} = 0.25 A, t _p = 25 μs,
Duty Cycle ≤ 1%) | t _s | - | 8 | - | μs | | Fall Time | | t _f | _ | 2 | - | μs | | Inductive Load, Clamped | (Table 1) | | I | I | I | 1 | | Voltage Storage Time | (I _{C(pk)} = 6 A, V _{CE(pk)} = 250 Vdc | t _{sv} | _ | 4 | _ | μs | | Crossover Time | . " ' " ' | | _ | 2 | _ | μs | | | | t _c | | 1 | | <u> </u> | Pulse Test: Pulse Width 300 μs, Duty Cycle = 2%. The internal Collector-to-Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V_f) of this diode is comparable to that of typical fast recovery rectifiers. ## **TYPICAL CHARACTERISTICS** Figure 1. Power Derating Figure 2. Inductive Switching Measurements Figure 3. DC Current Gain Figure 4. Base-Emitter Voltage Figure 5. Collector-Emitter Saturation Voltage **Table 1. Test Conditions for Dynamic Performance** | | REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING | RESISTIVE
SWITCHING | |----------------|---|--| | TEST CIRCUITS | DUTY CYCLE \leq 10% $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{3}$ $_{3}$ $_{1}$ $_{3}$ $_{3}$ $_{1}$ $_{3}$ $_{3}$ $_{1}$ $_{3}$ $_{3}$ $_{1}$ $_{3}$ $_{3}$ $_{1}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{5}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{$ | +V _{CC} R _C TUT SCOPE 1 -4V | | CIRCUIT | COIL DATA: GAP FOR 200 μ H/20 A $V_{CC} = 30$ V $V_{CE(pk)} = 250$ Vdc FULL BOBBIN (~16 TURNS) #16 $V_{Coil} = 200$ μ H $V_{Coil} = 200$ $V_{CE(pk)} = 250$ Vdc $V_{Ce(pk)} = 6$ A | V _{CC} = 250 V
D1 = 1N5820 OR EQUIV. | | TEST WAVEFORMS | OUTPUT WAVEFORMS $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $+10 \text{ V}$ $25 \mu\text{S}$ -9.2 V $+10 \text{ N}$ -9.2 V $+10 \text{ N}$ $+10$ | #### SAFE OPERATING AREA INFORMATION ## **FORWARD BIAS** There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 6 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 1. #### **REVERSE BIAS** For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turnoff. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 7 gives the complete RBSOA characteristics. The Safe Operating Area figures shown in Figures 6 and 7 are specified ratings for these devices under the test conditions shown. Figure 6. Forward Bias Safe Operating Area Figure 7. Reverse Bias Safe Operating Area ## RESISTIVE SWITCHING PERFORMANCE Figure 8. Turn-On Time Figure 9. Turn-Off Time ## **MECHANICAL CASE OUTLINE** D²PAK 3 CASE 418B-04 **ISSUE L** **DATE 17 FEB 2015** ### SCALE 1:1 - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. - 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04. | | INC | HES | MILL IN | IETERS | |-----|--------------------|-------|-----------|--------| | | | | | | | DIM | MIN | MAX | MIN | MAX | | Α | 0.340 | 0.380 | 8.64 | 9.65 | | В | 0.380 | 0.405 | 9.65 | 10.29 | | C | 0.160 | 0.190 | 4.06 | 4.83 | | D | 0.020 | 0.035 | 0.51 | 0.89 | | Е | 0.045 | 0.055 | 1.14 | 1.40 | | F | 0.310 | 0.350 | 7.87 | 8.89 | | G | 0.100 BSC | | 2.54 BSC | | | Н | 0.080 | 0.110 | 2.03 | 2.79 | | 7 | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.090 | 0.110 | 2.29 2.79 | | | L | 0.052 | 0.072 | 1.32 | 1.83 | | M | 0.280 | 0.320 | 7.11 8.1 | | | N | 0.197 REF | | 5.00 REF | | | Ρ | 0.079 REF 2.00 REF | | REF | | | R | 0.039 REF | | 0.99 REF | | | S | 0.575 | 0.625 | 14.60 | 15.88 | | ٧ | 0.045 | 0.055 | 1.14 | 1.40 | STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE STYLE 4: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR STYLE 5: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE STYLE 6: PIN 1. NO CONNECT 2. CATHODE 3. ANODE 4. CATHODE ## **MARKING INFORMATION AND FOOTPRINT ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42761B | Electronic versions are uncontrolled except when accessed directly from the Document Reposi
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|----------------------|--|-------------| | DESCRIPTION: | D ² PAK 3 | • | PAGE 1 OF 2 | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. **DATE 17 FEB 2015** # GENERIC MARKING DIAGRAM* xx = Specific Device Code A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week G = Pb-Free Package AKA = Polarity Indicator ## **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS | DOCUMENT NUMBER: | 98ASB42761B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|----------------------|--|-------------|--| | DESCRIPTION: | D ² PAK 3 | | PAGE 2 OF 2 | | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales