NPN Silicon Power Darlington Transistors

The MJE5740 and MJE5742 Darlington transistors are designed for high-voltage power switching in inductive circuits.

Features

• These Devices are Pb-Free and are RoHS Compliant*

Applications

- Small Engine Ignition
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls

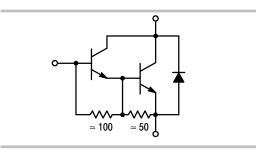
MAXIMUM RATINGS

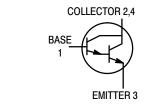
Rating	Symbol	Value	Unit
Collector–Emitter Voltage MJE5740 MJE5742	V _{CEO(sus)}	300 400	Vdc
Collector–Emitter Voltage MJE5740 MJE5742	V _{CEV}	600 800	Vdc
Emitter-Base Voltage	V _{EB}	8	Vdc
Collector Current – Continuous – Peak (Note 1)	I _C I _{CM}	8 16	Adc
Base Current – Continuous – Peak (Note 1)	I _B I _{BM}	2.5 5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	2 0.016	W W/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	100 0.8	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

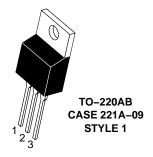
THERMAL CHARACTERISTICS

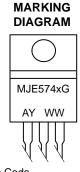
Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.25	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	TL	275	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.




ON Semiconductor®


www.onsemi.com

POWER DARLINGTON TRANSISTORS 8 AMPERES 300-400 VOLTS 80 WATTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (Note 2)	•			•	
Collector–Emitter Sustaining Voltage MJE5740 (I _C = 50 mA, I _B = 0) MJE5742	· CEO(sus)	300 400	_ _	_ _	Vdc
Collector Cutoff Current (V_{CEV} = Rated Value, $V_{BE(off)}$ = 1.5 Vdc) (V_{CEV} = Rated Value, $V_{BE(off)}$ = 1.5 Vdc, T_{C} = 100°C)	I _{CEV}	_ _	_ _	1 5	mAdc
Emitter Cutoff Current (V _{EB} = 8 Vdc, I _C = 0)		-	-	75	mAdc
SECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased		See Figure 6			
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 7			
ON CHARACTERISTICS (Note 2)					
DC Current Gain ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 5 \text{ Vdc}$) ($I_C = 4 \text{ Adc}$, $V_{CE} = 5 \text{ Vdc}$)	h _{FE}	50 200	100 400	- -	-
Collector–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, I_C = 100°C)	V _{CE(sat)}	- - -	- - -	2 3 2.2	Vdc
Base–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, T_C = 100°C)	V _{BE(sat)}	- - -	- - -	2.5 3.5 2.4	Vdc
Diode Forward Voltage (Note 3) (I _F = 5 Adc)	V _f	-	-	2.5	Vdc
SWITCHING CHARACTERISTICS	1	1	L	1	1

Typical Resistive Load (Table 1)						
Delay Time	$(V_{CC} = 250 \text{ Vdc}, I_{C(pk)} = 6 \text{ A}$ $I_{B1} = I_{B2} = 0.25 \text{ A}, t_p = 25 \text{ μs},$ Duty Cycle ≤ 1%)	t _d	_	0.04	_	μs
Rise Time		t _r	_	0.5	_	μs
Storage Time		t _s	_	8	_	μs
Fall Time		t _f	-	2	-	μs
Inductive Load, Clamped (Table 1)						
Voltage Storage Time	$(I_{C(pk)} = 6 \text{ A}, V_{CE(pk)} = 250 \text{ Vdc}$ $I_{B1} = 0.06 \text{ A}, V_{BE(off)} = 5 \text{ Vdc})$	t _{sv}	_	4	_	μs
Crossover Time		t _c	_	2	-	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Device	Package	Shipping
MJE5740G	TO-220 (Pb-Free)	5011-11- / D-11
MJE5742G	TO-220 (Pb-Free)	50 Units / Rail

^{2.} Pulse Test: Pulse Width 300 μs, Duty Cycle = 2%.

^{3.} The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V_f) of this diode is comparable to that of typical fast recovery rectifiers.

TYPICAL CHARACTERISTICS

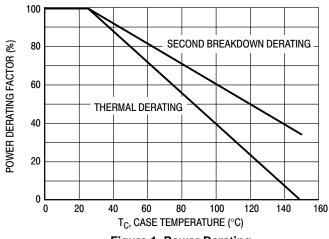
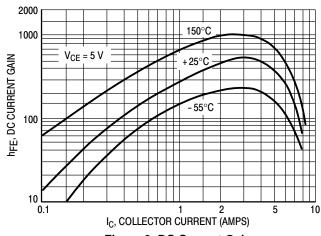



Figure 1. Power Derating

Figure 2. Inductive Switching Measurements

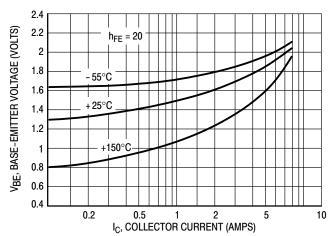


Figure 3. DC Current Gain

Figure 4. Base-Emitter Voltage

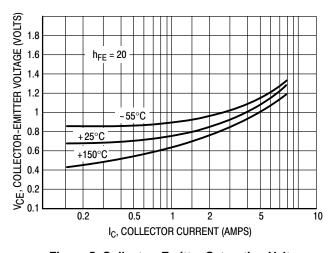
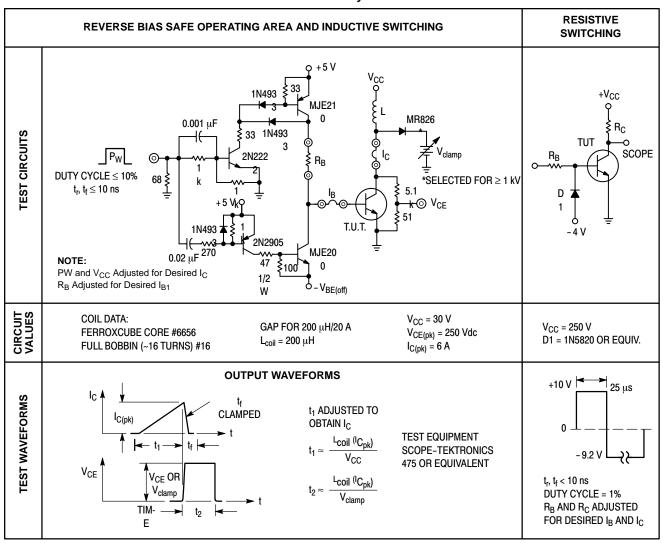
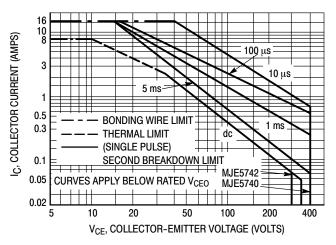



Figure 5. Collector-Emitter Saturation Voltage

Table 1. Test Conditions for Dynamic Performance

SAFE OPERATING AREA INFORMATION

FORWARD BIAS


There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 1.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turnoff. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 7 gives the complete RBSOA characteristics.

The Safe Operating Area figures shown in Figures 6 and 7 are specified ratings for these devices under the test conditions shown.

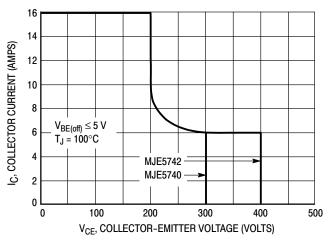


Figure 6. Forward Bias Safe Operating Area

Figure 7. Reverse Bias Safe Operating Area

RESISTIVE SWITCHING PERFORMANCE

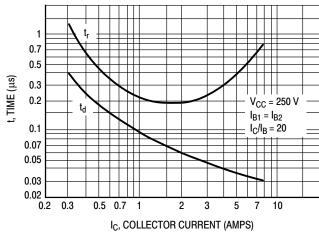


Figure 8. Turn-On Time

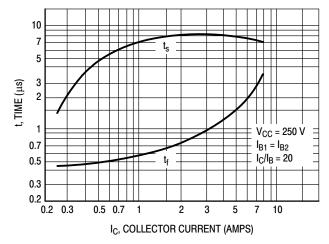


Figure 9. Turn-Off Time

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales