4-Bit Dual-Supply Inverting **Level Translator**

The NLSV4T240E is a 4-bit configurable dual-supply voltage level translator. The input A_n and output B_n ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_n to the output B_n port.

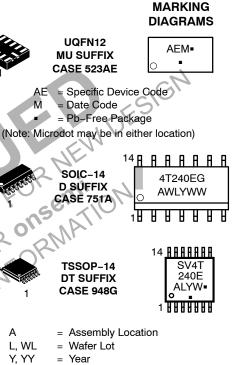
The NLSV4T240E is similar to the NLSV4T240; however, it has enhanced power-off characteristics.

Features

- Wide V_{CCA} and V_{CCB} Operating Range: 0.9 V to 4.5 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 4.5 V
- Non-preferential V_{CCA} and V_{CCB} Sequencing
- Outputs at 3-State until Active V_{CC} is Reached
- Power-Off Protection
- Outputs Switch to 3–State with V_{CCB} at GND
- Ultra-Small Packaging: 1.7 mm x 2.0 mm UQFN12
- This is a Pb–Free Device

Typical Applications

• Mobile Phones, PDAs, Other Portable Devices


Important Information

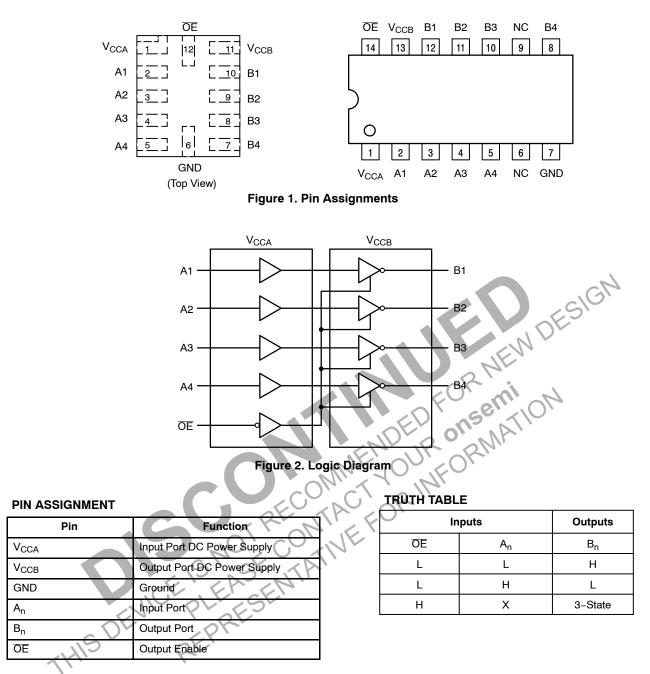
- ESD Protection for All Pins:
- RECOMME HBM (Human Body Model) > 6000 V THIS DEVICE PLEASENTATIVE FOR REPRESENTATIVE FOR

ON Semiconductor®

http://onsemi.com

Y, YY W. WW Work Week =

L, WL


G or • = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSV4T240EMUTAG	UQFN12 (Pb-Free)	3000/Tape & Reel
NLSV4T240EDR2G	SO-14 (Pb-Free)	2500/Tape & Reel
NLSV4T240EDTR2G	TSSOP14 (Pb-Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Rating		Value	Condition	Unit
V_{CCA}, V_{CCB}	DC Supply Voltage		-0.5 to +5.5		V
VI	DC Input Voltage	A _n	-0.5 to +5.5		V
V _C	Control Input	ŌĒ	-0.5 to +5.5		V
Vo	DC Output Voltage (Power Down)	B _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
	(Active Mode)	B _n	-0.5 to +5.5		V
	(Tri-State Mode)	B _n	-0.5 to +5.5		V
I _{IK}	DC Input Diode Current		-20	V _I < GND	mA
Ι _{ΟΚ}	DC Output Diode Current		-50	V _O < GND	mA
Ι _Ο	DC Output Source/Sink Current		±50		mA
I _{CCA} , I _{CCB}	DC Supply Current Per Supply Pin		±100		mA
I _{GND}	DC Ground Current per Ground Pin		±100		mA
T _{STG}	Storage Temperature		–65 to +150	CIQ.	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parame	eter	Min	Max	Unit
V _{CCA} , V _{CCB}	Positive DC Supply Voltage		0.9	4.5	V
VI	Bus Input Voltage	NP	GND	4.5	V
V _C	Control Input	DE	GND	4.5	V
V _{IO}	Bus Output Voltage	(Power Down Mode) B _n	GND	4.5	V
		(Active Mode) B _n	GND	V _{CCB}	V
		(Tri-State Mode) B _n	GND	4.5	V
T _A	Operating Temperature Range	COLVE	-40	+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Rate V_{l} , from 30% to 70% of V_{CG} ; V_{CC} = 3	3.3 V ±0,3 V	0	10	nS

DC ELECTRICAL CHARACTERISTICS

	S				–40°C to	o +85°C		
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit	
V _{IH}	Input HIGH Voltage		3.6 - 4.5	0.9 – 4.5	2.7	-	V	
	(An, OE)	(An, OE)		2.7 – 3.6		2.0	-	
		2.3 – 2.7		1.7	-			
			1.4 – 2.3	1	0.75 * V _{CCA}	-		
			0.9 - 1.4		0.9 * V _{CCA}	-		
V _{IL}	Input LOW Voltage		3.6 – 4.5	0.9 – 4.5	-	0.8	V	
	(An, OE)		2.7 – 3.6		-	0.8]	
			2.3 – 2.7		-	0.7		
			1.4 – 2.3		-	0.35 * V _{CCA}		
			0.9 – 1.4		-	0.1 * V _{CCA}		

DC ELECTRICAL CHARACTERISTICS

					-40°C to	o +85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -100 μA; V _I = V _{IH}	0.9-4.5	0.9 - 4.5	V _{CCB} - 0.2	-	V
		I_{OH} = -0.5 mA; V_I = V_{IH}	0.9	0.9	0.75 * V _{CCB}	-	
		$I_{OH} = -2 \text{ mA}; \text{ V}_{I} = \text{V}_{IH}$	1.4	1.4	1.05	-	
		$I_{OH} = -6 \text{ mA}; \text{ V}_{I} = \text{V}_{IH}$	1.65	1.65	1.25	-	
			2.3	2.3	2.0	-	
		$I_{OH} = -12 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.8	-	
			2.7	2.7	2.2	-	
		$I_{OH} = -18 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.7	-	
			3.0	3.0	2.4	-	
		$I_{OH} = -24 \text{ mA}; \text{ V}_{I} = \text{V}_{IH}$	3.0	3.0	2.2	-1	
V _{OL}	Output LOW Voltage	$I_{OL} = 100 \ \mu\text{A}; \ V_I = V_{IL}$	0.9 – 4.5	0.9 – 4.5	-	0.2	V
		$I_{OL} = 0.5 \text{ mA}; V_I = V_{IH}$	1.1	1.1		0.3	
		I_{OL} = 2 mA; V_I = V_{IH}	1.4	1.4	N	0.35	
		$I_{OL} = 6 \text{ mA}; V_I = V_{IL}$	1.65	1.65		0.3	
		I_{OL} = 12 mA; V_I = V_{IL}	2.3	2.3	-	0.4	
			2.7	2.7	<u>u -</u> 0	0.4	
		I _{OL} = 18 mA; V _I = V _{IL}	2.3	2.3		0.6	
			3.0	3.0	N_{L} –	0.4	
		I_{OL} = 24 mA; V_{I} = V_{IL}	3.0	3.0	-	0.55	
l _l	Input Leakage Current	$V_I = V_{CCA}$ or GND	0.9 – 4.5	0.9 – 4.5	-1.0	1.0	μA
I _{OFF}	Power-Off Leakage Current	OE = 0 V	0.9 - 4.5	0.9 – 4.5 0	-1.0 -1.0	1.0 1.0	μA
I _{CCA}	Quiescent Supply Current	$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$, $V_{CCA} = V_{CCB}$	0.9 – 4.5	0.9 – 4.5	_	2.0	μA
I _{CCB}	Quiescent Supply Current	$V_1 = V_{CCA}$ or GND; $I_0 = 0$, $V_{CCA} = V_{CCB}$	0.9 – 4.5	0.9 – 4.5	-	2.0	μA
CCA + I _{CCB}	Quiescent Supply Current	$V_{L} = V_{CCA}$ or GND; $I_{O} = 0$, $V_{CCA} = V_{CCB}$	0.9 – 4.5	0.9 – 4.5	-	4.0	μA
∆I _{CCA}	Increase in I_{CC} per Input Voltage, Other Inputs at V_{CCA} or GND		4.5 3.6	4.5 3.6	-	10 5.0	μA
ΔI _{CCB}	Increase in $I_{\rm CC}$ per Input Voltage, Other Inputs at $V_{\rm CCA}$ or GND	$V_{I} = V_{CCA} - 0.6 V;$ $V_{I} = V_{CCA}$ or GND	4.5 3.6	4.5 3.6	-	10 5.0	μA
I _{OZ}	I/O Tri-State Output Leakage	V _O = 0 V	4.5	4.5	-	1.0	μA
	Current ($T_A = 25^{\circ}C$, $\overline{OE} = V_{CCA}$)	V _O = 4.5 V	4.5	4.5	-	10	
		V _O = 0 to 4.5 V	2.5	3.5	-	105	1
			3.0	3.75	-	110	1
			3.3	3.0	-	75	1
			3.75	1.5	-	10	1

TOTAL STATIC POWER CONSUMPTION (I_{CCA} + I_{CCB})

	−40°C to +85°C										
		V _{CCB} (V)									
	4.5 3.3 2.8 1.8 0.9					.9					
V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
4.5		2		2		2		2		< 1.5	μA
3.3		2		2		2		2		< 1.5	μA
2.8		< 2		< 1		< 1		< 0.5		< 0.5	μΑ
1.8		< 1		< 1		< 0.5		< 0.5		< 0.5	μΑ
0.9		< 0.5		< 0.5		< 0.5		< 0.5		< 0.5	μA

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power-up sequence of V_{CCA} and V_{CCB} will not damage the IC.

AC ELECTRICAL CHARACTERISTICS

							-40°C to	o +85°C				10	•
			V _{CCB} (V)										
			4.	5	3.	.3		.8	1.	8		.5	
Symbol	Parameter	V _{CCA} (V)	Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation	4.5		3.0		3.2		3.4	2	3.7		4.0	nS
t _{PHL}	Delay,	3.6		3.3		3.5		3.7)`	4.0	1	4.3	
(Note 1)	A _n to B _n	2.8		3.5		3.7		3.9	S	4.2)`	4.5	
		1.8		3.8		4.0	NV V	4.2		4.5		4.8	
		1.5		4.1		4.3		4.5	Ria	4.8		5.0	
t _{PZH} ,	Output	4.5		4.4		4.8	10	5.2)	5.7		6.2	nS
t _{PZL}	ZL Enable, lote 1) OE to B _n	3.3		4.7	·0''	5.1		5.5		6.0		6.5	
(NOLE I)		2.8		4.9	7.	5.3	O_{L}	5.7		6.2		6.7	
		1.8	~	5.2	1.	5.6		6.0		6.5		7.0	
		1.5	5	5.5	く	5.9		6.3		6.8		7.3	
t _{PHZ} ,	Output Disable,	4.5	S	4.4	D'	4.8		5.2		5.7		6.2	nS
t _{PLZ} (Note 1)		3.3	N.	4.7	*	5.1		5.5		6.0		6.5	
	OE to B _n	2.8		4.9		5.3		5.7		6.2		6.7	
	- OF	1.8	K	5.2		5.6		6.0		6.5		7.0	
	1Sr	1.5		5.5		5.9		6.3		6.8		7.3	
	Output to	4.1		0.15		0.15		0.15		0.15		0.15	nS
t _{OSLH} (Note 1)	Output Skew, Data to Out-	3.6		0.15		0.15		0.15		0.15		0.15	
	put	2.8		0.15		0.15		0.15		0.15		0.15	
		1.8		0.15		0.15		0.15		0.15		0.15]
		1.2		0.15		0.15		0.15		0.15		0.15	

1. Propagation delays defined per Figures 3 and 4.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 2)	Unit
C _{IN}	Control Pin Input Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	3.5	pF
C _{I/O}	I/O Pin Input Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or V_{CCA},f = 10 MHz	20	pF

2. Typical values are at $T_A = +25^{\circ}C$. 3. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: $I_{CC(operating)} \cong C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where $I_{CC} = I_{CCA} + I_{CCB}$ and N_{SW} = total number of outputs switching.

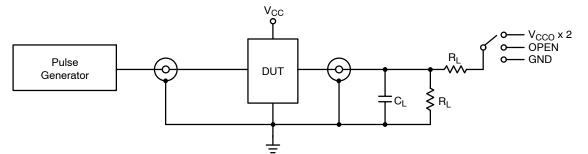
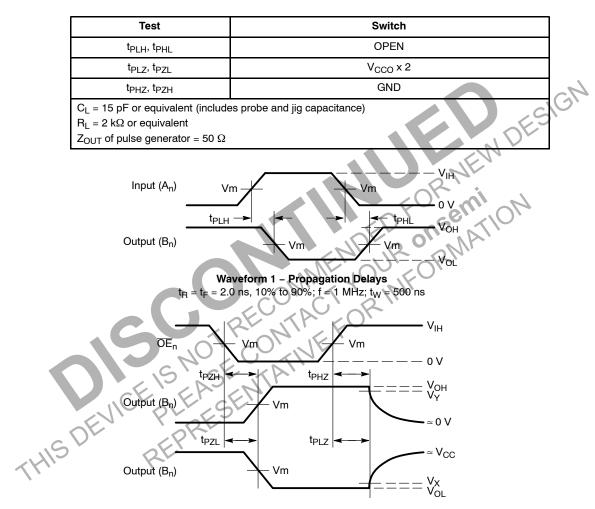
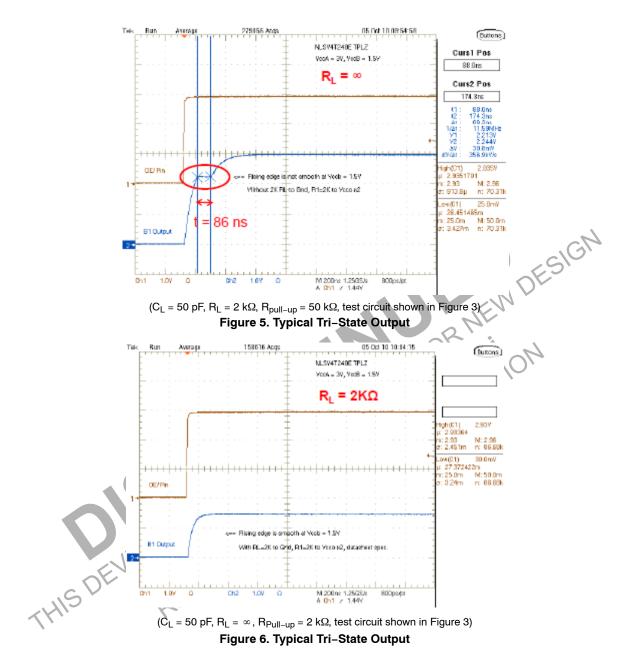



Figure 3. AC (Propagation Delay) Test Circuit

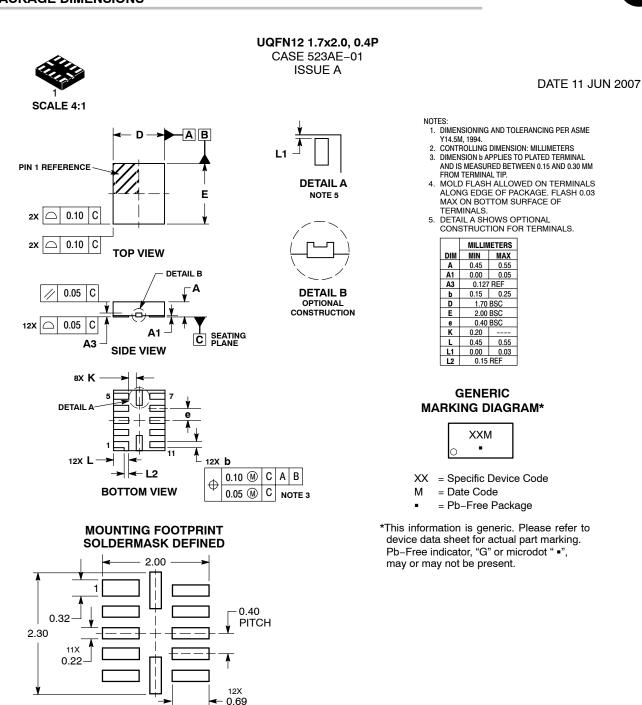


Waveform 2 – Output Enable and Disable Times $t_{B} = t_{F} = 2.0 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_{W} = 500 \text{ ns}$

Figure 4. AC (Propagation Delay)	Test Circuit Waveforms
----------------------------------	------------------------

	V _{CC}						
Symbol	3.0 V – 4.5 V	2.3 V – 2.7 V	1.65 V – 1.95 V	1.4 V – 1.6 V	0.9 V – 1.3 V		
V _{mA}	V _{CCA} /2						
V _{mB}	V _{CCB} /2						
V _X	V _{OL} x 0.1						
V _Y	V _{OH} x 0.9						

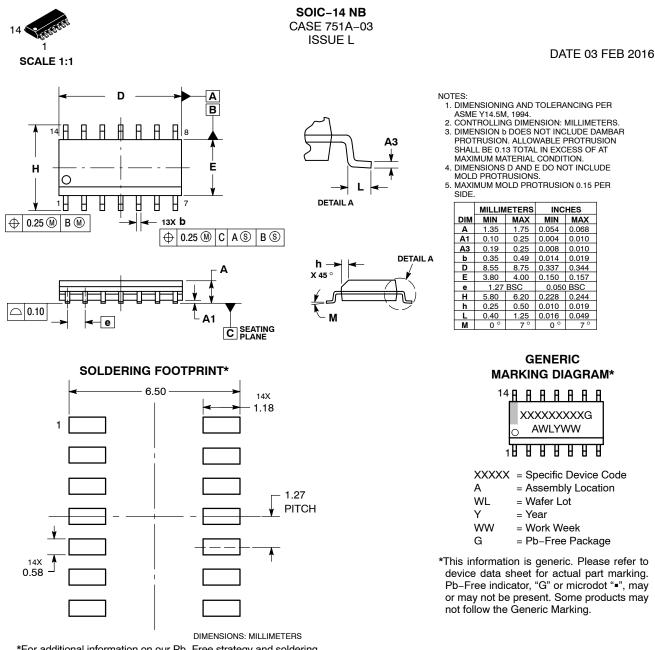
APPLICATIONS INFORMATION



Typical tri-state output waveforms of the NLSX4T240E are shown in Figures 5 and 6. The shape of the output waveform during a tri-state condition corresponding to the disable time (t_{PHZ} , t_{pLZ}) depends on the configuration of the pull-up circuit. Figure 5 shows a smooth monotonically increasing exponentially waveform because a 2 k Ω resistance is connected between the output and ground.

Figure 6 shows that the output may have a 'shelf' or a short duration where the slope of the waveform is equal to zero if no load resistance is connected to ground. The NLSX4T240E was created from the NLSX4T240 to minimize the 'shelf' of the waveform during the disable time.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS


DOCUMENT NUMBER:	98AON23418D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED 0					
DESCRIPTION:	UQFN12 1.7 X 2.0, 0.4P		PAGE 1 OF 1				
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and where a semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

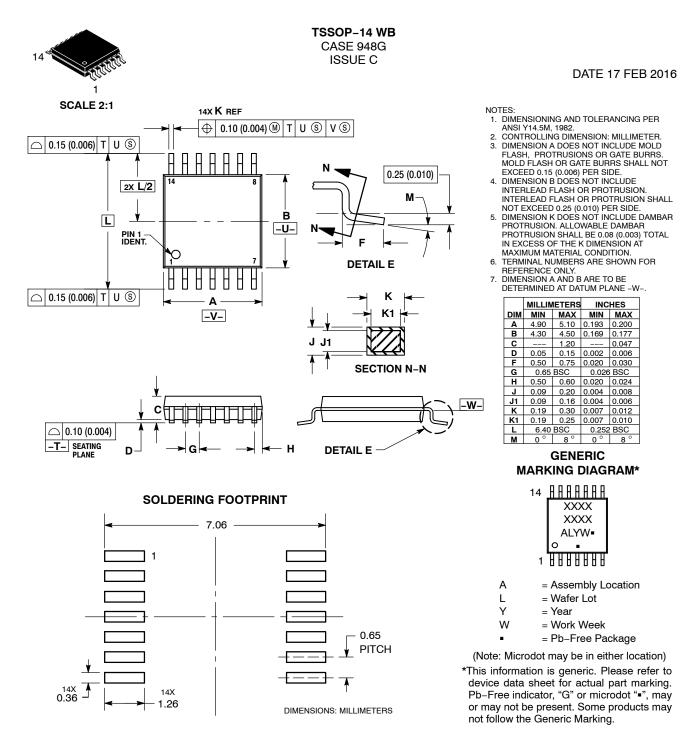
 DOCUMENT NUMBER:
 98ASB42565B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-14 NB
 PAGE 1 OF 2

 onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi axis me any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016


STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DESCRIPTION: SOIC-14 NB PAGE 2 OF	DOCUMENT NUMBER:	98ASB42565B Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
BESCHIFTION. COIC-14 NB FAGE 2 OF	DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

DOCUMENT NUMBER: 98ASH70246A Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: TSSOP-14 WB PAGE 1 OF 1					
onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular					

purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales