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What is a Regulated Power Supply?
Vout is permanently compared to a reference voltage Vref.
The reference voltage Vref is precise and stable over temperature.
The error, , is amplified and sent to the control input.
The power stage reacts to reduce ε as much as it can.
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How is Regulation Performed?
Text books only describe op amps in compensators…
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The market reality is different: the TL431 rules!
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How do we Stabilize a Converter?
We need a high gain at dc for a low static error
We want a sufficiently high crossover frequency for response speed
Shape the compensator G(s) to build phase and gain margins!
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How Much Phase Margin to Chose?

0 25 50 75 100
0

2.5

5

7.5

10

76°

Q

ϕm

5.00u 15.0u 25.0u 35.0u 45.0u

200m

600m

1.00

1.40

1.80

Q = 0.1

Q = 0.5

Q = 0.707

Q = 1

Q = 5

Fast response
and no overshoot!

Q < 0.5 over damping
Q = 0.5 critical damping
Q > 0.5 under damping

Asymptotically stable
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a Q factor of 0.5 (critical response) implies a ϕm of 76°
a 45° ϕm corresponds to a Q of 1.2: oscillatory response!

phase margin depends on the needed response: fast, no overshoot…
good practice is to shoot for 60° and make sure ϕm always > 45°



Which Crossover Frequency to Select?
crossover frequency selection depends on several factors:

switching frequency: theoretical limit is
in practice, stay below 1/5 of Fsw for noise concerns

output ripple: if ripple pollutes feedback, «tail chasing» can occur.
crossover frequency rolloff is mandatory, e.g. in PFC circuits

presence of a Right-Half Plane Zero (RHPZ):
you cannot cross over beyond 30% of the lowest RHPZ position

output undershoot specification:
select crossover frequency based on undershoot specs
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What Compensator Types do we Need?
There are basically 3 compensator types:
type 1, 1 pole at the origin, no phase boost
type 2, 1 pole at the origin, 1 zero, 1 pole. Phase boost up to 90°
type 3, 1 pole at the origin, 1 zero pair, 1 pole pair. Boost up to 180°
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The TL431 Programmable Zener
The TL431 is the most popular choice in nowadays designs
It associates an open-collector op amp and a reference voltage
The internal circuitry is self-supplied from the cathode current
When the R node exceeds 2.5 V, it sinks current from its cathode 
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The TL431 is a shunt regulator



The TL431 Programmable Zener
The TL431 lends itself very well to optocoupler control
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The TL431 Programmable Zener
This LED resistor is a design limiting factor in low output voltages:
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The TL431 – the Static Gain Limit
Let us assume the following design: 
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In designs where RLED fixes the gain, G0 cannot be below 17 dB 

You cannot “amplify” by less than 17 dB



The TL431 – the Static Gain Limit
You must identify the areas where compensation is possible
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TL431 – Injecting Bias Current
A TL431 must be biased above 1 mA to guaranty its parameters
If not, its open-loop suffers – a 10-dB difference can be observed!

Ibias = 1.3 mA

Ibias = 300 µA

> 10-dB difference

Easy
solution
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TL431 – Small-Signal Analysis
The TL431 is an open-collector op amp with a reference voltage
Neglecting the LED dynamic resistance, we have:
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TL431 – Small-Signal Analysis
In the previous equation we have:

a static gain

a 0-dB origin pole frequency

a zero

We are missing a pole for the type 2!
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TL431 – Small-Signal Analysis
The optocoupler also features a parasitic capacitor
it comes in parallel with C2 and must be accounted for
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TL431 – Small-Signal Analysis
The optocoupler must be characterized to know where its pole is
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The TL431 in a Type 1 Compensator
To make a type 1 (origin pole only) neutralize the zero and the pole
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TL431 Type 1 Design Example
We want a 5-dB gain at 5 kHz to stabilize the 5-V converter
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TL431 Type 1 Design Example
SPICE can simulate the design – automate elements calculations…
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Vref=2.5
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Vdd=4.8
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A=Vout-Vf-Vref
B=Vdd-VCEsat+Ibias*CTR*Rpullup
Rmax=(A/B)*Rpullup*CTR
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Automatic bias
point selection



TL431 Type 1 Design Example
We have a type 1 but 1.3 dB of gain is missing?
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TL431 Type 1 Design Example
The 1-kΩ resistor in parallel with the LED is an easy bias
However, as it appears in the loop, does it affect the gain?
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Both bias and dynamic resistances have a role in the gain expression



TL431 Type 1 Design Example
A low operating current increases the dynamic resistor
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Make sure you have enough LED current to reduce its resistance



TL431 Type 1 Design Example
The pullup resistor is 1 kΩ and the target now reaches 5 dB
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The TL431 in a Type 2 Compensator
Our first equation was already a type 2 definition, we are all set!
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Just make sure the optocoupler contribution is involved…



TL431 Type 2 Design Example
You need to provide a 15-dB gain at 5 kHz with a 50° boost

15 20
0 = CTR 10 5.62pullup

LED

R
G

R
= =

With a 250-µA bridge current, the divider resistor is made of:

2.5 250 10lowerR u k= = Ω ( )1 12 2.5 250 38R u k= − = Ω

The pole and zero respectively depend on Rpullup and R1:
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The LED resistor depends on the needed mid-band gain:
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TL431 Type 2 Design Example
The optocoupler is still at a 4-kHz frequency:

2poleC nF≈

Type 2 pole capacitor calculation requires a 581 pF cap.!

The bandwidth cannot be reached, reduce fc!

For noise purposes, we want a minimum of 100 pF for C
With a total capacitance of 2.1 nF, the highest pole can be:

1 1 3.8
2 6.28 20 2.1pole

pullup
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R C k nπ

= = =
× ×

For a 50° phase boost and a 3.8-kHz pole, the crossover must be:
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Already above!



TL431 Type 2 Design Example
The zero is then simply obtained:

2

516c
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p

ff Hz
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We can re-derive the component values and check they are ok

1 11 2 8.1zC f R nFπ= =2 1 2 2.1p pullupC f R nFπ= =

Given the 2-nF optocoupler capacitor, we just add 100 pF

In this example, RLED,max is 4.85 kΩ
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R
> > > ≈

You cannot use this type 2 if an attenuation is required at fc!



TL431 Type 2 Design Example
The 1-dB gain difference is linked to Rd and the bias current
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TL431 – Suppressing the Fast Lane
The gain limit problem comes from the fast lane presence
Its connection to Vout creates a parallel input
The solution is to hook the LED resistor to a fixed bias
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TL431 – Suppressing the Fast Lane
The equivalent schematic becomes an open-collector op amp
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TL431 – Suppressing the Fast Lane
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outV

FBV

2C

1C

pullupR

2R

The small-signal ac representation puts all sources to 0
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TL431 – Suppressing the Fast Lane
The op amp can now be wired in any configuration!
Just keep in mind the optocoupler transmission chain
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Wire the op amp in type 2A version (no high frequency pole)
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When cascaded, you obtain a type 2 with an extra gain term
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TL431 Type 2 Design Example – No Fast Lane
We still have a constraint on RLED but only for dc bias purposes
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,max min

, min

CTR
CTR

z f TL
LED pullup

dd CE sat bias pullup

V V V
R R

V V I R
− −

≤
− +

You need to attenuate by -10-dB at 1.4 kHz with a 50° boost
The poles and zero position are that of the previous design
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TL431 Type 2 Design Example – No Fast Lane
We need to account for the extra gain term:
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The required total mid-band attenuation at 1.4 kHz is -10 dB

0
1

2

0.316 0.067 or 23.5
4.72

GG dB
G

= = = −

10 2010 0.316
cf

G −= =
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Calculate R2 for this attenuation:



TL431 Type 2 Design Example – No Fast Lane
An automated simulation helps to test the calculation results
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fc=1.4k
Gfc=10
Vf=1
Ibias=1m
Vref=2.5
VCEsat=300m
Vdd=5
Vz=6.2
Rpullup=20k
Fopto=4k
Copto=1/(2*pi*Rpullup*Fopto)
CTR=0.3
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G2=10^(-Gfc/20)
G=G2/G1
pi=3.14159
fz=516
fp=3.8k
C1=1/(2*pi*fz*R2)
Cpole2=1/(2*pi*fp*Rpullup)
C2=Cpole2-Copto
a=(fz^2+fc^2)*(fp^2+fc^2)
c=(fz^2+fc^2)
R2=(sqrt(a)/c)*G*fc*Rupper/fp
Rmax1=(Vz-Vf-Vref)
Rmax2=(Vdd-VCEsat+Ibias*(Rpullup*CTR))
RLED=(Rmax1/Rmax2)*Rpullup*CTR*0.85

Zener
value



TL431 Type 2 Design Example – No Fast Lane

TL431

The simulation results confirm the calculations are ok
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The TL431 in a Type 3 Compensator

TL431

The type 3 with a TL431 is difficult to put in practice

Suppress the fast lane for an easier implementation!
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The TL431 in a Type 3 Compensator
Once the fast lane is removed, you have a classical configuration
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TL431 Type 3 Design Example – No Fast Lane
We want to provide a 10-dB attenuation at 1 kHz
The phase boost needs to be of 120°
place the double pole at 3.7 kHz and the double zero at 268 Hz

431,min
,max min

, min

CTR 1.5
CTR

z f TL
LED pullup

dd CE sat bias pullup

V V V
R R k

V V I R
− −

≤ ≤ Ω
− +

Calculate the maximum LED resistor you can accept, apply margin

X 0.85 1.3 kΩ

2
20kCTR = 0.3 4.6
1.3k

pullup

LED

R
G

R
= =

10 2010 0.316
cf

G −= =

We need to account for the extra gain term:

The required total mid-band attenuation at 1 kHz is -10 dB

TL431



TL431 Type 3 Design Example – No Fast Lane

0
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2

0.316 0.068 or 23.3
4.6

GG dB
G

= = = −

The mid-band gain from the type 3 is therefore:

Calculate R2 for this attenuation:
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⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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The optocoupler pole limits the upper double pole position
The maximum boost therefore depends on the crossover frequency

1 2 3800 148 14.5 2optoC nF C pF C nF C nF= = = =



TL431 Type 3 Design Example – No Fast Lane

TL431

The decoupling between Vout and Vbias affects the curves
dB
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Agenda

Feedback generalities
The TL431 in a compensator
Small-signal analysis of the return chain
A type 1 implementation with the TL431
A type 2 implementation with the TL431
A type 3 implementation with the TL431
Design examples
Conclusion



Design Example 1 – a Single-Stage PFC
The single-stage PFC is often used in LED applications
It combines isolation, current-regulation and power factor correction
Here, a constant on-time BCM controller, the NCL30000, is used
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Design Example 1 – a Single-Stage PFC
Once the converter elements are known, ac-sweep the circuit
Select a crossover low enough to reject the ripple, e.g. 20 Hz

-8.00

-4.00

0

4.00

8.00

0

1 2 5 10 20 50 100 200 500 1k

-80.0

-40.0

0

40.0

80.0

-2.5 dB
20 Hz

-11°( )arg H s

( )H s
dB

°



4

5

67

3

10

11

12

1

13

2

Design Example 1 – a Single-Stage PFC
Given the low phase lag, a type 1 can be chosen
Use the type 2 with fast lane removal where fp and fz are coincident
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Design Example 1 – a Single-Stage PFC
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Design Example 2: a DCM Flyback Converter
We want to stabilize a 20 W DCM adapter
Vin = 85 to 265 V rms, Vout = 12 V/1.7 A
Fsw = 65 kHz, Rpullup = 20 kΩ
Optocoupler is SFH-615A, pole is at 6 kHz
Cross over target is 1 kHz
Selected controller: NCP1216

1. Obtain a power stage open-loop Bode plot, H(s)
2. Look for gain and phase values at cross over
3. Compensate gain and build phase at cross over, G(s)
4. Run a loop gain analysis to check for margins, T(s)
5. Test transient responses in various conditions



Design Example 2: a DCM Flyback Converter
Capture a SPICE schematic with an averaged model
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Design Example 2: a DCM Flyback Converter
Observe the open-loop Bode plot and select fc: 1 kHz
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Design Example 2: a DCM Flyback Converter
Apply k factor or other method, get fz and fp

fz = 3.5 kHz  fp = 4.5 kHz 
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Design Example 2: a DCM Flyback Converter
4

ϕm = 60°

Check loop gain and watch phase margin at fc
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Design Example 2: a DCM Flyback Converter
Sweep ESR values and check margins again
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Use an Automated Design Tool
To speed-up your design studies, use the right tool!

Enter 
calculated 
values

Show power
stage gain
and phase

1. 2.

3.

Compute
pole/zero
check open
loop gain

4.

See final
values on
TL431

www.onsemi.com
NCP1200, design tools



Conclusion
Classical loop control theory describes op amps in compensators

Engineers cannot apply their knowledge to the TL431

Examples show that the TL431 with an optocoupler have limits

Once these limits are understood, the TL431 is simple to use

All three compensator types have been covered

Design examples showed the power of averaged models

Use them to extensively reproduce parameter dispersions

Applying these recipes is key to design success! 

Merci !
Thank you!

Xiè-xie!



For More Information

• View the extensive portfolio of power management products from ON 
Semiconductor at www.onsemi.com

• View reference designs, design notes, and other material supporting 
the design of highly efficient power supplies at 
www.onsemi.com/powersupplies


