NCP1252

Current Mode PWM Controller for Forward and Flyback Applications

The NCP1252 controller offers everything needed to build cost-effective and reliable ac–dc switching supplies dedicated to ATX power supplies. Thanks to the use of an internally fixed timer, NCP1252 detects an output overload without relying on the auxiliary Vcc. A Brown–Out input offers protection against low input voltages and improves the converter safety. Finally a SOIC–8 package saves PCB space and represents a solution of choice in cost sensitive project.

Features
- Peak Current Mode Control
- Adjustable Switching Frequency up to 500 kHz
- Jittering Frequency ±5% of the Switching Frequency
- Latched Primary Over Current Protection with 10 ms Fixed Delay
- Delay Extended to 150 ms in E Version
- Delayed Operation Upon Start–up via an Internal Fixed Timer (A, B and C versions only)
- Adjustable Soft–start Timer
- Auto–recovery Brown–Out Detection
- UC384X–like UVLO Thresholds
- Vcc Range from 9 V to 28 V with Auto–recovery UVLO
- Internal 160 ns Leading Edge Blanking
- Adjustable Internal Ramp Compensation
- +500 mA / –800 mA Source / Sink Capability
- Maximum 50% Duty Cycle: A Version
- Maximum 80% Duty Cycle: B Version
- Maximum 65% Duty Cycle: C Version
- Maximum 47.5% Duty Cycle: D & E Versions
- Ready for Updated No Load Regulation Specifications
- SOIC–8 and PDIP–8 Packages
- These are Pb–Free Devices

Typical Applications
- Power Supplies for PC Silver Boxes, Games Adapter...
- Flyback and Forward Converter

Power Supplies for ATX Power Supplies

Features
- Peak Current Mode Control
- Adjustable Switching Frequency up to 500 kHz
- Jittering Frequency ±5% of the Switching Frequency
- Latched Primary Over Current Protection with 10 ms Fixed Delay
- Delay Extended to 150 ms in E Version
- Delayed Operation Upon Start–up via an Internal Fixed Timer (A, B and C versions only)
- Adjustable Soft–start Timer
- Auto–recovery Brown–Out Detection
- UC384X–like UVLO Thresholds
- Vcc Range from 9 V to 28 V with Auto–recovery UVLO
- Internal 160 ns Leading Edge Blanking
- Adjustable Internal Ramp Compensation
- +500 mA / –800 mA Source / Sink Capability
- Maximum 50% Duty Cycle: A Version
- Maximum 80% Duty Cycle: B Version
- Maximum 65% Duty Cycle: C Version
- Maximum 47.5% Duty Cycle: D & E Versions
- Ready for Updated No Load Regulation Specifications
- SOIC–8 and PDIP–8 Packages
- These are Pb–Free Devices

Typical Applications
- Power Supplies for PC Silver Boxes, Games Adapter...
- Flyback and Forward Converter

PIN CONNECTIONS

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 18 of this data sheet.
Table 1. PIN FUNCTIONS

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Function</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FB</td>
<td>Feedback</td>
<td>This pin directly connects to an optocoupler collector.</td>
</tr>
<tr>
<td>2</td>
<td>BO</td>
<td>Brown–out input</td>
<td>This pin monitors the input voltage image to offer a Brown–out protection.</td>
</tr>
<tr>
<td>3</td>
<td>CS</td>
<td>Current sense</td>
<td>Monitors the primary current and allows the selection of the ramp compensation amplitude.</td>
</tr>
<tr>
<td>4</td>
<td>RT</td>
<td>Timing element</td>
<td>A resistor connected to ground fixes the switching frequency.</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>–</td>
<td>The controller ground pin.</td>
</tr>
<tr>
<td>6</td>
<td>Drv</td>
<td>Driver</td>
<td>This pin connects to the MOSFET gate</td>
</tr>
<tr>
<td>7</td>
<td>VCC</td>
<td>VCC</td>
<td>This pin accepts voltage range from 8 V up to 28 V</td>
</tr>
<tr>
<td>8</td>
<td>SSTART</td>
<td>Soft–start</td>
<td>A capacitor connected to ground selects the soft–start duration. The soft start is grounded during the delay timer</td>
</tr>
</tbody>
</table>

Table 2. MAXIMUM RATINGS TABLE (Notes 1 and 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Rating</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>Power Supply voltage, Vcc pin, transient voltage: 10 ms with IVcc < 20 mA</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>VCC</td>
<td>Power Supply voltage, Vcc pin, continuous voltage</td>
<td>28</td>
<td>V</td>
</tr>
<tr>
<td>IVcc</td>
<td>Maximum current injected into pin 7</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>VDRV</td>
<td>Maximum voltage on DRV pin</td>
<td>-0.3 to VCC</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Maximum voltage on low power pins (except pin 6, 7)</td>
<td>-0.3 to 10</td>
<td>V</td>
</tr>
<tr>
<td>RθJA – PDIP8</td>
<td>Thermal Resistance Junction–to–Air – PDIP8</td>
<td>131</td>
<td>°C/W</td>
</tr>
<tr>
<td>RθJA – SOIC8</td>
<td>Thermal Resistance Junction–to–Air – SOIC8</td>
<td>169</td>
<td>°C/W</td>
</tr>
<tr>
<td>Tj(MAX)</td>
<td>Maximum Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>TSTG</td>
<td>Storage Temperature Range</td>
<td>-60 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>ESDHBM</td>
<td>ESD Capability, HBM model</td>
<td>1.8</td>
<td>kV</td>
</tr>
<tr>
<td>ESDMM</td>
<td>ESD Capability, Machine Model</td>
<td>200</td>
<td>V</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. This device series contains ESD protection and exceeds the following tests: Human Body Model 1800 V per JEDEC Standard JESD22–A114E, Machine Model Method 200 V per JEDEC Standard JESD22–A115A.
2. This device contains latch–up protection and exceeds 100 mA per JEDEC Standard JESD78.
Figure 2. Internal Circuit Architecture
Table 3. ELECTRICAL CHARACTERISTICS
(VCC = 15 V, RT = 43 kΩ, CDRV = 1 nF. For typical values TJ = 25°C, for min/max values TJ = –25°C to +125°C, unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Test Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLY SECTION AND VCC MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Startup threshold at which driving pulses are authorized</td>
<td>VCC increasing A, B, C versions D & E versions</td>
<td>VCC(on)</td>
<td>9.4</td>
<td>13.1</td>
<td>10.6</td>
<td>V</td>
</tr>
<tr>
<td>Minimum Operating voltage at which driving pulses are stopped</td>
<td>VCC decreasing</td>
<td>VCC(off)</td>
<td>8.4</td>
<td>9</td>
<td>9.6</td>
<td>V</td>
</tr>
<tr>
<td>Hysteresis between VCC(on) and VCC(min)</td>
<td></td>
<td></td>
<td>0.9</td>
<td>4.5</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Start–up current, controller disabled</td>
<td>VCC < VCC(on) & VCC increasing from zero</td>
<td>ICC1</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>μA</td>
</tr>
<tr>
<td>Internal IC consumption, controller switching</td>
<td>Fsw =100 kHz, DRV = open</td>
<td>ICC2</td>
<td>0.5</td>
<td>1.4</td>
<td>2.2</td>
<td>mA</td>
</tr>
<tr>
<td>Internal IC consumption, controller switching</td>
<td>Fsw =100 kHz, CDRV = 1 nF</td>
<td>ICC3</td>
<td>2.0</td>
<td>2.7</td>
<td>3.5</td>
<td>mA</td>
</tr>
<tr>
<td>CURRENT COMPARATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Sense Voltage Threshold</td>
<td></td>
<td>VILIM</td>
<td>0.92</td>
<td>1</td>
<td>1.08</td>
<td>V</td>
</tr>
<tr>
<td>Leading Edge Blanking Duration</td>
<td></td>
<td>tLEB</td>
<td>–</td>
<td>160</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>(Note 3)</td>
<td>Ibias</td>
<td>–</td>
<td>0.02</td>
<td>–</td>
<td>μA</td>
</tr>
<tr>
<td>Propagation delay</td>
<td>From CS detected to gate turned off</td>
<td>tILIM</td>
<td>–</td>
<td>70</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>Internal Ramp Compensation Voltage level</td>
<td>@ 25°C (Note 4)</td>
<td>VRAMP</td>
<td>3.15</td>
<td>3.5</td>
<td>3.85</td>
<td>V</td>
</tr>
<tr>
<td>Internal Ramp Compensation resistance to CS pin</td>
<td>@ 25°C (Note 4)</td>
<td>Rramp</td>
<td>–</td>
<td>26.5</td>
<td>–</td>
<td>kΩ</td>
</tr>
<tr>
<td>INTERNAL OSCILLATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>RT = 43 kΩ & DRV pin = 47 kΩ</td>
<td>fOSC</td>
<td>92</td>
<td>100</td>
<td>108</td>
<td>kHz</td>
</tr>
<tr>
<td>Oscillator Frequency</td>
<td>RT = 8.5 kΩ & DRV pin = 47 kΩ</td>
<td>fOSC</td>
<td>425</td>
<td>500</td>
<td>550</td>
<td>kHz</td>
</tr>
<tr>
<td>Frequency Modulation in percentage of fOSC</td>
<td>(Note 3)</td>
<td>fjitter</td>
<td>–</td>
<td>±5</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>Frequency modulation Period</td>
<td>(Note 3)</td>
<td>Tswing</td>
<td>–</td>
<td>3.33</td>
<td>–</td>
<td>ms</td>
</tr>
<tr>
<td>Maximum operating frequency</td>
<td>(Note 3)</td>
<td>fMAX</td>
<td>500</td>
<td>–</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>Maximum duty–cycle – A version</td>
<td></td>
<td>DCMAXA</td>
<td>45.6</td>
<td>48</td>
<td>49.6</td>
<td>%</td>
</tr>
<tr>
<td>Maximum duty–cycle – B version</td>
<td></td>
<td>DCMAXB</td>
<td>76</td>
<td>80</td>
<td>84</td>
<td>%</td>
</tr>
<tr>
<td>Maximum duty–cycle – C version</td>
<td></td>
<td>DCMAXC</td>
<td>61</td>
<td>65</td>
<td>69</td>
<td>%</td>
</tr>
<tr>
<td>Maximum duty–cycle – D & E versions</td>
<td></td>
<td>DCMAXD</td>
<td>44.2</td>
<td>45.6</td>
<td>47.2</td>
<td>%</td>
</tr>
<tr>
<td>FEEDBACK SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal voltage division from FB to CS setpoint</td>
<td></td>
<td>FBdiv</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Internal pull–up resistor</td>
<td></td>
<td>RPull-up</td>
<td>–</td>
<td>3.5</td>
<td>–</td>
<td>kΩ</td>
</tr>
<tr>
<td>FB pin maximum current</td>
<td>FB pin = GND</td>
<td>IFB</td>
<td>1.5</td>
<td>–</td>
<td>–</td>
<td>mA</td>
</tr>
<tr>
<td>Internal feedback impedance from FB to GND</td>
<td></td>
<td>ZFB</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>kΩ</td>
</tr>
<tr>
<td>Open loop feedback voltage</td>
<td>FB pin = open</td>
<td>VFBO</td>
<td>–</td>
<td>6.0</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Internal Diode forward voltage</td>
<td>(Note 3)</td>
<td>Vt</td>
<td>–</td>
<td>0.75</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>DRIVE OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRV Source resistance</td>
<td></td>
<td>RSRC</td>
<td>–</td>
<td>10</td>
<td>30</td>
<td>Ω</td>
</tr>
<tr>
<td>DRV Sink resistance</td>
<td></td>
<td>RSINK</td>
<td>–</td>
<td>6</td>
<td>19</td>
<td>Ω</td>
</tr>
<tr>
<td>Output voltage rise–time</td>
<td>VCC = 15 V, CDRV = 1 nF, 10 to 90%</td>
<td>t</td>
<td>–</td>
<td>26</td>
<td>–</td>
<td>ns</td>
</tr>
</tbody>
</table>

3. Guaranteed by design
4. VRAMP, RRAMP Guaranteed by design
Table 3. ELECTRICAL CHARACTERISTICS
(\(V_{CC} = 15\, \text{V}, \, R_T = 43\, \text{k}\Omega, \, C_{DRV} = 1\, \text{nF}\). For typical values \(T_J = 25\, \degree\text{C}\), for min/max values \(T_J = -25\, \degree\text{C}\) to +125\, \degree\text{C}\), unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Test Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVE OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage fall–time</td>
<td>(V_{CC} = 15, \text{V}, , C_{DRV} = 1, \text{nF}, , \text{90 to 10%})</td>
<td>(t_f)</td>
<td>22</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Clamping voltage (maximum gate voltage)</td>
<td>(V_{CC} = 25, \text{V}) (R_{DRV} = 47, \text{k}\Omega, , C_{DRV} = 1, \text{nF})</td>
<td>(V_{CL})</td>
<td>15</td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>High–state voltage drop</td>
<td>(V_{CC} = V_{CC,(\text{min})} + 100, \text{mV}, , R_{DRV} = 47, \text{k}\Omega, , C_{DRV} = 1, \text{nF})</td>
<td>(V_{DRV,(\text{clamp})})</td>
<td>50</td>
<td>500</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>CYCLE SKIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skip cycle level</td>
<td>(V_{\text{skip}})</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Skip threshold Reset</td>
<td>(V_{\text{skip,(reset)}})</td>
<td>–</td>
<td>(V_{\text{skip,(HYS)}})</td>
<td>–</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Skip threshold Hysteresis</td>
<td>(V_{\text{skip,(HYS)}})</td>
<td>–</td>
<td>25</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>SOFT START</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft–start charge current</td>
<td>(\text{SS pin} = \text{GND})</td>
<td>(I_{SS})</td>
<td>8.8</td>
<td>10</td>
<td>11</td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td>Soft start completion voltage threshold</td>
<td>(V_{SS})</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Internal delay before starting the Soft start when (V_{CC,(\text{on})}) is reached</td>
<td>For A, B and C versions only – No delay for D & E versions</td>
<td>(SS_{\text{delay}})</td>
<td>100</td>
<td>120</td>
<td>155</td>
<td>ms</td>
</tr>
<tr>
<td>PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current sense fault voltage level triggering the timer</td>
<td>(F_{CS})</td>
<td>0.9</td>
<td>1</td>
<td>1.1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Timer delay before latching a fault (overload or short circuit) – A/B/C/D versions</td>
<td>When (CS, \text{pin} > F_{CS})</td>
<td>(T_{\text{fault}})</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>ms</td>
</tr>
<tr>
<td>Timer delay before latching a fault (overload or short circuit) – E version</td>
<td>When (CS, \text{pin} > F_{CS})</td>
<td>(T_{\text{fault}})</td>
<td>120</td>
<td>155</td>
<td>200</td>
<td>ms</td>
</tr>
<tr>
<td>Brown–out voltage</td>
<td>(V_{BO})</td>
<td>0.974</td>
<td>1</td>
<td>1.026</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Internal current source generating the Brown–out hysteresis</td>
<td>(\text{at } -5^\circ\text{C} \leq T_J \leq +125^\circ\text{C}) (\text{and } -25^\circ\text{C} \leq T_J \leq +125^\circ\text{C})</td>
<td>(I_{BO})</td>
<td>8.8</td>
<td>10</td>
<td>11.2</td>
<td>(\mu\text{A})</td>
</tr>
</tbody>
</table>

3. Guaranteed by design
4. \(V_{\text{amp}}, \, R_{\text{amp}}\) Guaranteed by design

Table 4. SELECTION TABLE

<table>
<thead>
<tr>
<th>NCP1252</th>
<th>Start-up Delay</th>
<th>Duty Ratio Max</th>
<th>VCC Start (Typ.)</th>
<th>Fault Timer (Typ.)</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yes</td>
<td>50%</td>
<td>10 V</td>
<td>15 ms</td>
<td>Latched</td>
</tr>
<tr>
<td>B</td>
<td>Yes</td>
<td>80%</td>
<td>10 V</td>
<td>15 ms</td>
<td>Latched</td>
</tr>
<tr>
<td>C</td>
<td>Yes</td>
<td>65%</td>
<td>10 V</td>
<td>15 ms</td>
<td>Latched</td>
</tr>
<tr>
<td>D</td>
<td>No</td>
<td>47.5%</td>
<td>14 V</td>
<td>15 ms</td>
<td>Latched</td>
</tr>
<tr>
<td>E</td>
<td>No</td>
<td>47.5%</td>
<td>14 V</td>
<td>150 ms</td>
<td>Latched</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

Figure 3. Supply Voltage Threshold vs. Junction Temperature (A, B and C Versions)

Figure 4. Supply Voltage Hysteresis vs. Junction Temperature (A, B and C Versions)

Figure 5. Supply Voltage $V_{CC(on)}$ Threshold vs. Junction Temperature (D Version)

Figure 6. Supply Voltage Hysteresis vs. Junction Temperature (D Version)

Figure 7. Start-up Current (ICC_1) vs. Junction Temperature

Figure 8. Supply Current (ICC_3) vs. Junction Temperature
TYPICAL CHARACTERISTICS

Figure 9. Supply Current (I_{CC3}) vs. Supply Voltage

Figure 10. Current Sense Voltage Threshold vs. Junction Temperature

Figure 11. Leading Edge Blanking Time vs. Junction Temperature

Figure 12. Leading Edge Blanking Time vs. Supply Voltage

Figure 13. Propagation Delay from CS to DRV vs. Junction Temperature

Figure 14. Propagation Delay from CS to DRV vs. Supply Voltage
TYPICAL CHARACTERISTICS

Figure 15. Oscillator Frequency vs. Junction Temperature

Figure 16. Oscillator Frequency vs. Supply Voltage

Figure 17. Oscillator Frequency vs. Oscillator Resistor

Figure 18. Maximum Duty-cycle, A Version vs. Junction Temperature

Figure 19. Maximum Duty-cycle, B Version vs. Junction Temperature
TYPICAL CHARACTERISTICS

Figure 20. Maximum Duty-cycle, C Version vs. Junction Temperature

Figure 21. Maximum Duty-cycle, D Version vs. Junction Temperature

Figure 22. Drive Sink and Source Resistances vs. Junction Temperature

Figure 23. Drive Clamping Voltage vs. Junction Temperature

Figure 24. Drive Clamping Voltage vs. Supply Voltage

Figure 25. Skip Cycle Threshold vs. Junction Temperature
TYPICAL CHARACTERISTICS

Figure 26. Soft Start Current vs. Junction Temperature

Figure 27. Soft Start Completion Voltage Threshold vs. Junction Temperature

Figure 28. Brown Out Voltage Threshold vs. Junction Temperature

Figure 29. Brown Out Voltage Threshold vs. Supply Voltage

Figure 30. Internal Brown Out Current Source vs. Junction Temperature

Figure 31. Internal Brown Out Current Source vs. Supply Voltage
NCP1252

Application Information

Introduction
The NCP1252 hosts a high-performance current-mode controller specifically developed to drive power supplies designed for the ATX and the adapter market:

- **Current Mode operation**: implementing peak current-mode control topology, the circuit offers UC384X-like features to build rugged power supplies.

- **Adjustable switching frequency**: a resistor to ground precisely sets the switching frequency between 50 kHz and a maximum of 500 kHz. There is no synchronization capability.

- **Internal frequency jittering**: Frequency jittering softens the EMI signature by spreading out peak energy within a band ±5% from the center frequency.

- **Wide Vcc excursion**: the controller allows operation up to 28 V continuously and accepts transient voltage up to 30 V during 10 ms with $I_{VCC} < 20$ mA.

- **Gate drive clamping**: a lot of power MOSFETs do not allow their driving voltage to exceed 20 V. The controller includes a low-loss clamping voltage which prevents the gate from going beyond 15 V typical.

- **Low startup current**: reaching a low no-load standby power represents a difficult exercise when the controller requires an external, lossy, resistor connected to the bulk capacitor. The start-up current is guaranteed to be less than 100 µA maximum, helping the designer to reach a low standby power level.

- **Short-circuit protection**: by monitoring the CS pin voltage when it exceeds 1 V (maximum peak current), the controller detects a fault and starts an internal digital timer. On the condition that the digital timer elapses, the controller will permanently latch-off. This allows accurate overload or short-circuit detection which is not dependent on the auxiliary winding. Reset occurs when: a) a BO reset is sensed, b) V_{CC} is cycled down to $V_{CC(min)}$ level. If the short circuit or the fault disappear before the fault timer ends, the fault timer is reset only if the CS pin voltage level is below 1 V at least during 3 switching frequency periods. This delay before resetting the fault timer prevents any false or missing fault or over load detection.

- **Adjustable soft-start**: the soft-start is activated upon a start-up sequence (V_{CC} going-up and crossing $V_{CC(on)}$) after a minimum internal time delay of 120 ms (SS_{delay}). But also when the brown-out pin is reset without in that case timer delay. This internal time delay gives extra time to the PFC to be sure that the output PFC voltage is in regulation. The soft start pin is grounded until the internal delay is ended. Please note that SS_{delay} is present only for A, B and C versions.

- **Shutdown**: if an external transistor brings the BO pin down, the controller is shut down, but all internal biasing circuits are alive. When the pin is released, a new soft-start sequence takes place.

- **Brown-Out protection**: BO pin permanently monitors a fraction of the input voltage. When this image is below the V_{BO} threshold, the circuit stays off and does not switch. As soon the voltage image comes back within safe limits, the pulses are re-started via a start-up sequence including soft-start. The hysteresis is implemented via a current source connected to the BO pin; this current source sinks a current (I_{BO}) from the pin to the ground. As the current source status depends on the brown-out comparator, it can easily be used for hysteresis purposes. A transistor pulling down the BO pin to ground will shut-off the controller. Upon release, a new soft-start sequence takes place.

- **Internal ramp compensation**: a simple resistor connected from the CS pin to the sense resistor allows the designer to inject ramp compensation inside his design.

- **Skip cycle feature**: When the power supply loads are decreasing to a low level, the duty cycle also decreases to the minimum value the controller can offer. If the output loads disappear, the converter runs at the minimum duty cycle fixed by the propagation delay and driving blocks. It often delivers too much energy to the secondary side and it trips the voltage supervisor. To avoid this problem, the FB is allowed to impose the min t_{ON} down to $~V_f$ and it further decreases down to V_{skip}, zero duty cycle is imposed. This mode helps to ensure no-load outputs conditions as requested by recently updated ATX specifications. Please note that the converter first goes to min t_{ON} before going to zero duty cycle: normal operation is thus not disturbed. The following figure illustrates the different mode of operation versus the FB pin level.
Startup Sequence:
The startup sequence is activated when Vcc pin reaches \(V_{CC(on)} \) level. Once the startup sequence has been activated the internal delay timer (\(SS_{delay} \)) runs (except D version). Only when the internal delay elapses the soft start can be allowed if the BO pin level is above \(V_{BO} \) level. If the BO pin threshold is reached or as soon as this level will be reached the soft start is allowed. When the soft start is allowed the SS pin is released from the ground and the current source connected to this pin sources its current to the external capacitor connected on SS pin. The voltage variation of the SS pin divided by 4 gives the same peak current variation on the CS pin.

The following figures illustrate the different startup cases.

With the Case #1, when the \(V_{CC} \) pin reaches the \(V_{CC(on)} \) level, the internal timer starts. As the BO pin level is above the \(V_{BO} \) threshold at the end of the internal delay, a soft start sequence is started.

With the Case #2, at the end of the internal delay, the BO pin level is below the \(V_{BO} \) threshold thus the soft start sequence can not start. A new soft start sequence will start only when the BO pin reaches the \(V_{BO} \) threshold.
When the BO pin is grounded, the controller is shut down and the SS pin is internally grounded in order to discharge the soft start capacitor connected to this pin (Case #3). If the BO pin is released, when its level reaches the V_{BO} level a new soft start sequence happens.

Soft Start:

As illustrated by the following figure, the rising voltage on the SS pin voltage divided by 4 controls the peak current sensed on the CS pin. Thus as soon as the CS pin voltage becomes higher than the SS pin voltage divided by 4 the driver latch is reset.
The following figure illustrates a soft start sequence.

![Figure 36. Soft Start Example](image)

Figure 36. Soft Start Example

Brown-Out Protection

By monitoring the level on BO pin, the controller protects the forward converter against low input voltage conditions. When the BO pin level falls below the \(V_{BO} \) level, the controller stops pulsing until the input level goes back to normal and resumes the operation via a new soft start sequence.

![Figure 37. BO Pin Setup](image)

Figure 37. BO Pin Setup

The following equations show how to calculate the resistors for BO pin.

First of all, select the bulk voltage value at which the controller must start switching (\(V_{bulkon} \)) and the bulk voltage for shutdown (\(V_{bulkoff} \)) as follows.

Where:

- \(V_{bulkon} = 370 \text{ V} \)
- \(V_{bulkoff} = 350 \text{ V} \)
- \(V_{BO} = 1 \text{ V} \)
- \(I_{BO} = 10 \mu\text{A} \)

When BO pin voltage is below \(V_{BO} \) (internal voltage reference), the internal current source (\(I_{BO} \)) is activated. The following equation can be written:

\[
V_{bulkON} = R_{BOup} \left(I_{BO} + \frac{V_{BO}}{R_{BOlo}} \right) + V_{BO} \quad (eq. 1)
\]

When BO pin voltage is higher than \(V_{BO} \), the internal current source is now disabled. The following equation can be written:

\[
V_{BO} = \frac{V_{bulkoff} R_{BOlo}}{R_{BOlo} + R_{BOup}} \quad (eq. 2)
\]

From Equation 2 it can be extracted the \(R_{BOup} \):

\[
R_{BOup} = \left(\frac{V_{bulkoff} - V_{BO}}{V_{BO}} \right) R_{BOlo} \quad (eq. 3)
\]

Equation 3 is substituted in Equation 1 and solved for \(R_{BOlo} \), yielding:
\[
R_{BOlo} = \frac{V_{BO}}{I_{BO}} \left(\frac{V_{bulkon} - V_{BO}}{V_{bulkoff} - V_{BO}} - 1 \right) \quad (eq. 4)
\]

\[
R_{BOup} = \frac{V_{bulkon} - V_{bulkoff}}{I_{BO}} \quad (eq. 5)
\]

From Equation 4 and Equation 5, the resistor divider value can be calculated:

\[
R_{BOlo} = \frac{1}{10 \mu} \left(\frac{370 - 1}{350 - 1} - 1 \right) = 5731 \Omega
\]

\[
R_{BOup} = \frac{370 - 350}{10 \mu} = 2.0 \text{ M}\Omega
\]

Short Circuit or Over Load Protection:

A short circuit or an overload situation is detected when the CS pin level reaching its maximum level at 1 V. In that case the fault status is stored in the latch and allows the digital timer count. If the digital timer ends then the fault is latched and the controller permanently stops the pulses on the driver pin.

If the fault is gone before ending the digital timer, the timer is reset only after 3 switching controller periods without fault detection (or when the CS pin < 1 V during at least 3 switching periods).

If the fault is latched the controller can be reset if a BO reset is sensed or if VCC is cycled down to VCC(off). The fault timer is typically set to 15 ms for A/B/C and D versions but is extended to 150 ms for the E version.

Shut Down

There is one possibility to shut down the controller; this possibility consists of grounding the BO pin as illustrated in Figure 37.

Slope Compensation

Slope compensation is a known mean to cure subharmonic oscillations. These oscillations take place at half of the switching frequency and occur only during Continuous Conduction Mode (CCM) with a duty–cycle close to and above 50%. To lower the current loop gain, one usually injects between 50 and 100% of the inductor downslope. Figure 39 depicts how internally the ramp is generated:

The compensation is derived from the oscillator via a buffer. A switch placed between the buffered internal oscillator ramp and R_{ramp} disconnects the compensation ramp during the OFF time DRV signal.
In the NCP1252, the internal ramp swings with a slope of:

$$S_{int} = \frac{V_{ramp}}{DC_{max}} F_{SW} \quad \text{(eq. 6)}$$

In a forward application the secondary–side downslope viewed on a primary side requires a projection over the sense resistor R_{sense}. Thus:

$$S_{sense} = \frac{V_{out} + V_f}{L_{out}} \frac{N_2}{N_p} R_{sense} \quad \text{(eq. 7)}$$

where:
- V_{out} is output voltage level
- V_f the freewheel diode forward drop
- L_{out} the secondary inductor value
- N_2/N_p the transformer turn ratio
- R_{sense}: the sense resistor on the primary side

Assuming the selected amount of ramp compensation to be applied is δ_{comp}, then we must calculate the division ratio to scale down S_{int} accordingly:

$$\text{Ratio} = \frac{R_{sense} \delta_{comp}}{S_{int}} \quad \text{(eq. 8)}$$

Thus the new division ratio is:

$$\text{if } \delta_{natural_comp} < \delta_{comp} \Rightarrow \text{Ratio} = \frac{S_{sense}(\delta_{comp} - \delta_{natural_comp})}{S_{int}} \quad \text{(eq. 12)}$$

Then R_{comp} can be calculated with the same equation used when the natural ramp is neglected (Equation 9).

Ramp Compensation Design Example:

2 switch–Forward Power supply specification:
- Regulated output: 12 V
- $L_{out} = 27 \mu H$
- $V_f = 0.7 V$ (drop voltage on the regulated output)
- Current sense resistor : 0.75 Ω
- Switching frequency : 125 kHz

A few line of algebra determined R_{comp}:

$$R_{comp} = R_{ramp} \frac{\text{Ratio}}{1 - \text{Ratio}} \quad \text{(eq. 9)}$$

The previous ramp compensation calculation does not take into account the natural primary ramp created by the transformer magnetizing inductance. In some case illustrated here after the power supply does not need additional ramp compensation due to the high level of the natural primary ramp.

The natural primary ramp is extracted from the following formula:

$$S_{natural} = \frac{V_{bulk}}{L_{mag}} R_{sense} \quad \text{(eq. 10)}$$

Then the natural ramp compensation will be:

$$\delta_{natural_comp} = \frac{S_{natural}}{S_{sense}} \quad \text{(eq. 11)}$$

If the natural ramp compensation ($\delta_{natural_comp}$) is higher than the ramp compensation needed (δ_{comp}), the power supply does not need additional ramp compensation. If not, only the difference ($\delta_{comp} - \delta_{natural_comp}$) should be used to calculate the accurate compensation value.
Internal ramp compensation level

\[S_{\text{int}} = \frac{V_{\text{ramp}}}{DC_{\text{max}}F_{\text{sw}}} \Rightarrow S_{\text{int}} = \frac{3.5}{0.84} \times 125 \text{ kHz} = 520 \text{ mV / } \mu \text{s} \]

Secondary–side downslope projected over the sense resistor is:

\[S_{\text{sense}} = \frac{(V_{\text{out}} + V_f)N_s}{L_{\text{out}}} \cdot \frac{R_{\text{sense}}}{N_p} \Rightarrow S_{\text{sense}} = \frac{(12 + 0.7)}{27 \times 10^{-6}} \times 0.085 \times 0.75 = 29.99 \text{ mV / } \mu \text{s} \]

Natural primary ramp:

\[S_{\text{natural}} = \frac{V_{\text{bulk}}}{L_{\text{mag}}} \cdot \frac{R_{\text{sense}}}{S_{\text{sense}}} \Rightarrow S_{\text{natural}} = \frac{350}{13 \times 10^{-3}} \times 0.75 = 20.19 \text{ mV / } \mu \text{s} \]

Thus the natural ramp compensation is:

\[\delta_{\text{natural comp}} = \frac{S_{\text{natural}}}{S_{\text{sense}}} \Rightarrow \delta_{\text{natural comp}} = \frac{20.19}{29.99} = 67.3\% \]

Here the natural ramp compensation is lower than the desired ramp compensation, so an external compensation should be added to prevent sub–harmonics oscillation.

\[\text{Ratio} = \frac{S_{\text{sense}}(\delta_{\text{comp}} - \delta_{\text{natural comp}})}{S_{\text{int}}} \Rightarrow \text{Ratio} = \frac{29.99 \cdot (1.00 - 0.67)}{520} = 0.019 \]

We can know calculate external resistor (R_{comp}) to reach the correct compensation level.

\[R_{\text{comp}} = \frac{R_{\text{ramp}} \cdot \text{Ratio}}{1 - \text{Ratio}} \Rightarrow R_{\text{comp}} = 26.5 \times 10^3 \times \frac{0.019}{1 - 0.019} = 509 \Omega \]

Thus with R_{comp} = 510 \Omega, 100\% compensation ramp is applied on the CS pin.

The following example illustrates a power supply where the natural ramp offers enough ramp compensation to avoid external ramp compensation.

2 switch–Forward Power supply specification:

- Regulated output: 12 V
- \(L_{\text{out}} = 27 \mu \text{H} \)
- \(V_f = 0.7 \text{ V} \) (drop voltage on the regulated output)
- Current sense resistor: 0.75 \(\Omega \)
- Switching frequency: 125 kHz
- \(V_{\text{bulk}} = 350 \text{ V} \), minimum input voltage at which the power supply works.

Duty cycle max: \(DC_{\text{max}} = 84\% \)
- \(V_{\text{ramp}} = 3.5 \text{ V} \), Internal ramp level.
- \(R_{\text{ramp}} = 26.5 \text{ k} \Omega \), Internal pull–up resistance
- Targeted ramp compensation level: 100\%
- Transformer specification:
 - \(L_{\text{mag}} = 7 \text{ mH} \)
 - \(N_s/N_p = 0.085 \)

Secondary–side downslope projected over the sense resistor is:

\[S_{\text{sense}} = \frac{(V_{\text{out}} + V_f)N_s}{L_{\text{out}}} \cdot \frac{N_p}{R_{\text{sense}}} \Rightarrow S_{\text{sense}} = \frac{(12 + 0.7)}{27 \times 10^{-6}} \times 0.085 \times 0.75 = 29.99 \text{ mV / } \mu \text{s} \]

The natural primary ramp is:

\[S_{\text{natural}} = \frac{V_{\text{bulk}}}{L_{\text{mag}}} \cdot \frac{R_{\text{sense}}}{S_{\text{sense}}} \Rightarrow S_{\text{natural}} = \frac{350}{7 \times 10^{-3}} \times 0.75 = 37.5 \text{ mV / } \mu \text{s} \]

And the natural ramp compensation will be:

\[\delta_{\text{natural comp}} = \frac{S_{\text{natural}}}{S_{\text{sense}}} \Rightarrow \delta_{\text{natural comp}} = \frac{37.5}{29.99} = 125\% \]

So in that case the natural ramp compensation due to the magnetizing inductance of the transformer will be enough to prevent any sub–harmonics oscillation in case of duty cycle above 50\%.

www.onsemi.com
Table 5. ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Version</th>
<th>Marking</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCP1252APG</td>
<td>A</td>
<td>1252AP</td>
<td>50 Units / Rail</td>
</tr>
<tr>
<td>NCP1252ADR2G</td>
<td>A</td>
<td>1252A</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>NCP1252BDR2G</td>
<td>B</td>
<td>1252B</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>NCP1252CDR2G</td>
<td>C</td>
<td>1252C</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>NCP1252DDR2G</td>
<td>D</td>
<td>1252D</td>
<td>2500 / Tape & Reel</td>
</tr>
<tr>
<td>NCP1252EDR2G</td>
<td>E</td>
<td>1252E</td>
<td>2500 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
PACKAGE DIMENSIONS

8 LEAD PDIP
CASE 626−05
ISSUE P

NOTES:
2. CONTROLLING DIMENSION: INCHES.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE Contour IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

<table>
<thead>
<tr>
<th>NOTES</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.310</td>
<td>7.87</td>
</tr>
<tr>
<td>A1</td>
<td>0.155</td>
<td>3.94</td>
</tr>
<tr>
<td>b</td>
<td>0.014</td>
<td>0.35</td>
</tr>
<tr>
<td>b2</td>
<td>0.060</td>
<td>1.52</td>
</tr>
<tr>
<td>C</td>
<td>0.085</td>
<td>2.16</td>
</tr>
<tr>
<td>D</td>
<td>0.355</td>
<td>9.02</td>
</tr>
<tr>
<td>D1</td>
<td>0.005</td>
<td>0.13</td>
</tr>
<tr>
<td>E</td>
<td>0.305</td>
<td>7.75</td>
</tr>
<tr>
<td>E1</td>
<td>0.240</td>
<td>6.10</td>
</tr>
<tr>
<td>e</td>
<td>0.100</td>
<td>2.54</td>
</tr>
<tr>
<td>eB</td>
<td>0.060</td>
<td>1.52</td>
</tr>
<tr>
<td>L</td>
<td>0.115</td>
<td>2.92</td>
</tr>
<tr>
<td>M</td>
<td>10.0</td>
<td>254.0</td>
</tr>
</tbody>
</table>

DIM MIN MAX MIN MAX

NOTE 8
NCP1252

PACKAGE DIMENSIONS

SOIC–8 NB
CASE 751–07
ISSUE AK

NOTES:
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDEHRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.