# 3.2 Watt Plastic Surface **Mount POWERMITE Package** # 1PMT5920B Series This complete new line of 3.2 Watt Zener Diodes are offered in highly efficient micro miniature, space saving surface mount with its unique heat sink design. The POWERMITE package has the same thermal performance as the SMA while being 50% smaller in footprint area and delivering one of the lowest height profiles (1.1 mm) in the industry. Because of its small size, it is ideal for use in cellular phones, portable devices, business machines and many other industrial/consumer applications. #### **Features** - Zener Breakdown Voltage: 6.2 47 V - DC Power Dissipation: 3.2 W with Tab 1 (Cathode) @ 75°C - Low Leakage < 5 μA - ESD Rating of Class 3 (> 16 kV) per Human Body Model - Low Profile Maximum Height of 1.1 mm - Integral Heat Sink/Locking Tabs - Full Metallic Bottom Eliminates Flux Entrapment - Small Footprint Footprint Area of 8.45 mm<sup>2</sup> - Supplied in 12 mm Tape and Reel - Lead Orientation in Tape: Cathode (Short) Lead to Sprocket Holes - POWERMITE is JEDEC Registered as DO-216AA - Cathode Indicated by Polarity Band - These Devices are Pb-Free and are RoHS Compliant #### **Mechanical Characteristics** **CASE:** Void-free, transfer-molded, thermosetting plastic **FINISH:** All external surfaces are corrosion resistant and leads are readily solderable **MOUNTING POSITION:** Any **MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:** 1 260°C for 10 Seconds # PLASTIC SURFACE MOUNT 3.2 WATT ZENER DIODES 6.2 - 47 VOLTS #### MARKING DIAGRAM М Date Code xxB = Specific Device Code (See Table on Page 2) = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | |--------------|------------------------|-----------------------| | 1PMT59xxBT1G | POWERMITE<br>(Pb-Free) | 3000 / Tape &<br>Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## 1PMT5920B Series #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |-----------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|---------------------| | DC Power Dissipation @ T <sub>A</sub> = 25°C (Note 1) Derate above 25°C Thermal Resistance, Junction–to–Ambient | P <sub>D</sub><br>R <sub>θJA</sub> | 500<br>4.0<br>248 | mW<br>mW/°C<br>°C/W | | Thermal Resistance, Junction-to-Lead (Anode) | $R_{\theta Janode}$ | 35 | °C/W | | Maximum DC Power Dissipation (Note 2) Thermal Resistance from Junction-to-Tab (Cathode) | $P_D$ $R_{ hetaJcathode}$ | 3.2<br>23 | °C/W | | Operating and Storage Temperature Range | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Mounted with recommended minimum pad size, PC board FR-4. - 2. At Tab (Cathode) temperature, T<sub>tab</sub> = 75°C # **ELECTRICAL CHARACTERISTICS** ( $T_L = 25^{\circ}C$ unless otherwise noted, $V_F = 1.5$ V Max. @ $I_F = 200$ mAdc for all types) | Symbol | Parameter | | | |-----------------|-------------------------------------------|--|--| | V <sub>Z</sub> | Reverse Zener Voltage @ I <sub>ZT</sub> | | | | I <sub>ZT</sub> | Reverse Current | | | | Z <sub>ZT</sub> | Maximum Zener Impedance @ I <sub>ZT</sub> | | | | I <sub>ZK</sub> | Reverse Current | | | | Z <sub>ZK</sub> | Maximum Zener Impedance @ I <sub>ZK</sub> | | | | I <sub>R</sub> | Reverse Leakage Current @ V <sub>R</sub> | | | | V <sub>R</sub> | Reverse Voltage | | | | I <sub>F</sub> | Forward Current | | | | V <sub>F</sub> | Forward Voltage @ I <sub>F</sub> | | | ## **ELECTRICAL CHARACTERISTICS** (T<sub>L</sub> = 30°C unless otherwise noted, V<sub>F</sub> = 1.25 Volts @ 200 mA) | | | Zener | Voltage (N | Note 3) | | | | Z <sub>ZT</sub> @ I <sub>ZT</sub> | Z <sub>ZK</sub> @ I <sub>ZK</sub> | | |--------------|---------|----------------|------------------------|---------|-----------------|---------------------------------|---------|-----------------------------------|-----------------------------------|-----------------| | | Device | V <sub>Z</sub> | @ I <sub>ZT</sub> (Vol | ts) | I <sub>ZT</sub> | I <sub>R</sub> @ V <sub>R</sub> | $V_{R}$ | (Note 4) | (Note 4) | I <sub>ZK</sub> | | Device* | Marking | Min | Nom | Max | (mA) | (μΑ) | (V) | (Ω) | (Ω) | (mA) | | 1PMT5920BT1G | 20B | 5.89 | 6.2 | 6.51 | 60.5 | 5.0 | 4.0 | 2.0 | 200 | 1.0 | | 1PMT5921BT1G | 21B | 6.46 | 6.8 | 7.14 | 55.1 | 5.0 | 5.2 | 2.5 | 200 | 1.0 | | 1PMT5924BT1G | 24B | 8.64 | 9.1 | 9.56 | 41.2 | 5.0 | 7.0 | 4.0 | 500 | 0.5 | | 1PMT5927BT1G | 27B | 11.4 | 12 | 12.6 | 31.2 | 1.0 | 9.1 | 6.5 | 550 | 0.25 | | 1PMT5929BT1G | 29B | 14.25 | 15 | 15.75 | 25 | 1.0 | 11.4 | 9.0 | 600 | 0.25 | | 1PMT5933BT1G | 33B | 20.9 | 22 | 23.1 | 17 | 1.0 | 16.7 | 17.5 | 650 | 0.25 | | 1PMT5934BT1G | 34B | 22.8 | 24 | 25.2 | 15.6 | 1.0 | 18.2 | 19 | 700 | 0.25 | | 1PMT5935BT1G | 35B | 25.65 | 27 | 28.35 | 13.9 | 1.0 | 20.6 | 23 | 700 | 0.25 | | 1PMT5941BT1G | 41B | 44.65 | 47 | 49.35 | 8.0 | 1.0 | 35.8 | 67 | 1000 | 0.25 | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 3. Zener voltage is measured with the device junction in thermal equilibrium with an ambient temperature of 25°C. - 4. Zener Impedance Derivation $Z_{ZT}$ and $Z_{ZK}$ are measured by dividing the AC voltage drop across the device by the AC current applied. The specified limits are for $I_Z(ac) = 0.1 I_Z(dc)$ with the ac frequency = 60 Hz. ## 1PMT5920B Series ## **TYPICAL CHARACTERISTICS** 100 (<del>V</del>E) 100 100 (<u>W</u>E) 100 100 100 100 110 Vz, ZENER VOLTAGE (VOLTS) Figure 1. Steady State Power Derating Figure 2. V<sub>Z</sub> to 10 Volts Figure 3. V<sub>Z</sub> = 12 thru 47 Volts Figure 4. Zener Voltage - To 12 Volts Figure 5. Zener Voltage - 14 To 47 Volts Figure 6. Effect of Zener Voltage # 1PMT5920B Series # **TYPICAL CHARACTERISTICS** Figure 7. Effect of Zener Current Figure 8. Capacitance versus Reverse Zener Voltage # POWERMITE 1.90x1.96x1.00 **CASE 457 ISSUE H** **DATE 16 MAY 2025** # +0.635 RECOMMENDED MOUNTING FOOTPRINT \*For additional information on our Pb—Free Strategy and Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **GENERIC MARKING DIAGRAMS\*** BOTTOM VIEW | MILLIMETERS | | | | | | |-------------|------|----------|------|--|--| | DIM | MIN | NOM | MAX | | | | А | 0.85 | 1.00 | 1.15 | | | | A1 | 0.00 | 0.05 | 0.10 | | | | b | 0.40 | 0.55 | 0.69 | | | | b1 | 0.70 | 0.85 | 1.00 | | | | С | 0.10 | 0.18 | 0.25 | | | | D | 1.75 | 1.90 | 2.05 | | | | Е | 1.75 | 1.96 | 2.18 | | | | Н | 3.60 | 3.75 | 3.90 | | | | L | 1.20 | 1.35 | 1.50 | | | | L1 | 0.50 | 0.65 | 0.80 | | | | L2 | | 0.50 REF | | | | #### NOTES: - DIMENSIONING AND TOLERANCING AS PER - ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. STYLE 2: PIN 1. ANODE OR CATHODE 2. CATHODE OR ANODE STYLE 3: PIN 1. ANODE 2. CATHODE \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking. (BI-DIRECTIONAL) | DOCUMENT NUMBER: | 98ASB14853C | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--| | DESCRIPTION: | POWERMITE 1.90x1.96x1.00 | | PAGE 1 OF 1 | | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales