2N3019, 2N3019S, 2N3700

80V, 1A NPN Small Signal Transistor

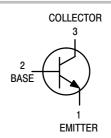
Features

- MIL-PRF-19500/391 Qualified
- Available as JAN, JANTX, and JANTXV

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	80	Vdc
Collector - Base Voltage	V _{CBO}	140	Vdc
Emitter – Base Voltage	V _{EBO}	7.0	Vdc
Collector Current – Continuous	Ic	1.0	Adc
Total Device Dissipation @ T _A = 25°C 2N3019, 2N3019S 2N3700	P _T	800 500	mW
Total Device Dissipation @ T _C = 25°C 2N3019, 2N3019S 2N3700	P _T	5.0 1.0	W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient 2N3019, 2N3019S 2N3700	$R_{ hetaJA}$	195 325	°C/W
Thermal Resistance, Junction to Case 2N3019, 2N3019S 2N3700	$R_{ heta JC}$	30 150	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

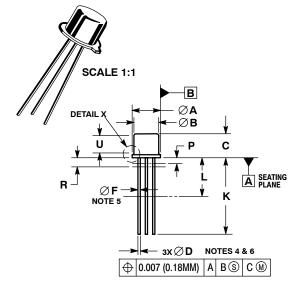
ON Semiconductor®

http://onsemi.com

TO-39 CASE 205AB STYLE 1 2N3019S

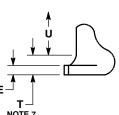
TO-18 CASE 206AA STYLE 1 2N3700

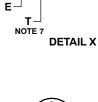
ORDERING INFORMATION


Device	Package	Shipping
JAN2N3019		
JANTX2N3019	TO-5	Bulk
JANTXV2N3019		
JAN2N3019S		
JANTX2N3019S	TO-39	Bulk
JANTXV2N3019S		
JAN2N3700		
JANTX2N3700	TO-18	Bulk
JANTXV2N3700		

2N3019, 2N3019S, 2N3700

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•	1		
Collector – Emitter Breakdown Voltage $(I_C = 30 \text{ mAdc})$	V _{(BR)CEO}	80	-	Vdc
Emitter-Base Cutoff Current (V _{EB} = 5.0 Vdc) (V _{EB} = 7.0 Vdc)	I _{EBO}	- -	10 10	nAdc μAdc
Collector–Emitter Cutoff Current (V _{CE} = 90 Vdc)	I _{CEO}	-	10	nAdc
Collector–Base Cutoff Current (V _{CB} = 140 Vdc)	I _{CBO}	-	10	μAdc
ON CHARACTERISTICS (Note 1)	-1			
DC Current Gain $ \begin{array}{l} (I_C = 0.1 \text{ mAdc, } V_{CE} = 10 \text{ Vdc)} \\ (I_C = 10 \text{ mAdc, } V_{CE} = 10 \text{ Vdc)} \\ (I_C = 150 \text{ mAdc, } V_{CE} = 10 \text{ Vdc)} \\ (I_C = 500 \text{ mAdc, } V_{CE} = 10 \text{ Vdc)} \\ (I_C = 5.00 \text{ mAdc, } V_{CE} = 10 \text{ Vdc)} \\ (I_C = 1.0 \text{ Adc, } V_{CE} = 10 \text{ Vdc)} \end{array} $	h _{FE}	50 90 100 50 15	300 - 300 300 -	-
Collector – Emitter Saturation Voltage (I_C = 150 mAdc, I_B = 15 mAdc) (I_C = 500 mAdc, I_B = 50 mAdc)	V _{CE(sat)}	- -	0.2 0.5	Vdc
Base – Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	-	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS	•			
Magnitude of Small–Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	h _{fe}	5.0	20	-
Small–Signal Current Gain ($I_C = 1.0$ mAdc, $V_{CE} = 5$ Vdc, $f = 1$ kHz)	h _{fe}	80	400	-
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz})$	C _{obo}	-	12	pF
Input Capacitance (V_{EB} = 0.5 Vdc, I_{C} = 0, 100 kHz \leq f \leq 1.0 MHz)	C _{ibo}	-	60	pF
Noise Figure (V_{CE} = 10 Vdc, I_{C} = 100 μ Adc, R_{g} = 1 $k\Omega$, PBW = 200 Hz)	NF	-	4.0	dB
Collector–Base Time Constant (V _{CB} = 10 Vdc, I _C = 10 mAdc, f = 79.8 MHz)	r' _b ,C _C	_	400	ps
SWITCHING CHARACTERISTICS	•	•	•	
Pulse Response (Reference Figure in MIL-PRF-19500/391)	t _{on} + t _{off}	_	30	ns


^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

TO-5 3-Lead CASE 205AA **ISSUE B**

DATE 06 JUL 2012

DETAIL

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. DIMENSION J MEASURED FROM DIAMETER A TO EDGE.
 4. LEAD TRUE POSITION TO BE DETERMINED AT THE GUAGE PLANE DEFINED BY DIMENSION R.
 5. DIMENSION F APPLIES BETWEEN DIMENSION P AND L.
 6. DIMENSION DAPPLIES BETWEEN DIMENSION LAND K.
 7. BODY CONTOUR OPTIONAL WITHIN ZONE DEFINED BY DIMENSIONS A R AND T.
- SIONS A, B, AND T.

 8. DIMENSION B SHALL NOT VARY MORE THAN 0.010 IN ZONE P.

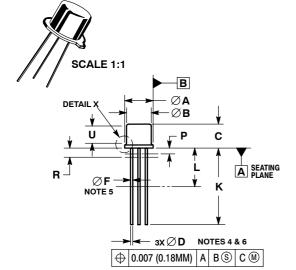
	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.89	9.40	0.350	0.370
В	8.00	8.51	0.315	0.335
С	6.10	6.60	0.240	0.260
D	0.41	0.53	0.016	0.021
E	0.23	3.18	0.009	0.125
F	0.41	0.48	0.016	0.019
Н	0.71	0.86	0.028	0.034
J	0.73	1.02	0.029	0.040
K	38.10	44.45	1.500	1.750
L	6.35		0.250	
M	45°	BSC	45°	BSC
N	5.08 BSC		0.200	BSC
P		1.27		0.050
R	1.37 BSC		0.054	BSC
T		0.76		0.030
U	2.54		0.100	

STYLE 1: PIN 1. EMITTER 2. BASE

 \emptyset N

۷.	DASE
3.	COLLECTOR

DOCUMENT NUMBER:	98AON49138E	Electronic versions are uncontrolle	'
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. versions are uncontrolled except when stam	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-5 3-LEAD		PAGE 1 OF 2



DOCUMENT	NUMBER:
98AON49138	E

PAGE 2 OF 2

100::=	DEWAY.	D
ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY B. JENSEN.	18 MAR 2010
Α	CHANGED DIMENSION "D" MAX TO 0.53 MM (0.021 IN). REQ. BY B. JENSEN.	10 AUG 2010
В	MADE ISOMETRIC IMAGE LARGER TO REFLECT ACTUAL SIZE. REQ. BY J. FULTON.	06 JUL 2012

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

TO-39 3-Lead CASE 205AB **ISSUE A**

DATE 25 JUN 2012

NOTES:

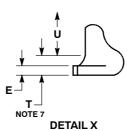
- NOTES:

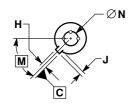
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. DIMENSION J MEASURED FROM DIAMETER A TO EDGE.

 4. LEAD TRUE POSITION TO BE DETERMINED AT THE GUAGE PLANE DEFINED BY DIMENSION R.


 5. DIMENSION F APPLIES BETWEEN DIMENSION P AND L.


 6. DIMENSION D APPLIES BETWEEN DIMENSION LAND K.

 7. BODY CONTOUR OPTIONAL WITHIN ZONE DEFINED BY DIMENSIONS A, B, AND T.

 8. DIMENSION B SHALL NOT VARY MORE THAN 0.010 IN ZONE P.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.89	9.40	0.350	0.370
В	8.00	8.51	0.315	0.335
С	6.10	6.60	0.240	0.260
D	0.41	0.48	0.016	0.019
E	0.23	3.18	0.009	0.125
F	0.41	0.48	0.016	0.019
Н	0.71	0.86	0.028	0.034
J	0.73	1.02	0.029	0.040
K	12.70	14.73	0.500	0.580
L	6.35		0.250	
M	45°	BSC	45 °BSC	
N	5.08 BSC		0.200	BSC
P		1.27		0.050
R	1.37 BSC		0.054	BSC
T		0.76		0.030
U	2.54		0.100	

DETAIL

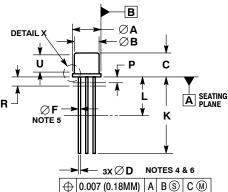
STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR

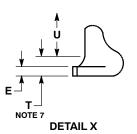
DOCUMENT NUMBER:	98AON49134E	Electronic versions are uncontrolle	'
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository, versions are uncontrolled except when star	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-39 3-LEAD		PAGE 1 OF 2

DOCUMENT	NUMBER:
98AON49134	ŀΕ

PAGE 2 OF 2

ISSUE	REVISION	DATE					
0	RELEASED FOR PRODUCTION. REQ. BY B. JENSEN.	18 MAR 2010					
А	MADE ISOMETRIC IMAGE LARGER TO REFLECT ACTUAL SIZE. REQ. BY J. FULTON.	25 JUN 2012					
-							


ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.



TO-18 CASE 206AA **ISSUE A**

DATE 21 AUG 2012

LEAD IDENTIFICATION

DETAIL

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
- DIMENSION J MEASURED FROM DIAMETER A TO EDGE.
 LEAD TRUE POSITION TO BE DETERMINED AT THE GUAGE
- PLANE DEFINED BY DIMENSION R.
 DIMENSION F APPLIES BETWEEN DIMENSION P AND L.
- DIMENSION D APPLIES BETWEEN DIMENSION L AND K.
- BODY CONTOUR OPTIONAL WITHIN ZONE DEFINED BY DIMENSIONS A, B, AND T.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	5.31	5.84	0.209	0.230
В	4.52	4.95	0.178	0.195
С	4.32	5.33	0.170	0.210
D	0.41	0.53	0.016	0.021
Е	-	0.76		0.030
F	0.41	0.48	0.016	0.019
Н	0.91	1.17	0.036	0.046
J	0.71	1.22	0.028	0.048
K	12.70	19.05	0.500	0.750
L	6.35		0.250	
M	45°BSC		45 °BSC	
N	2.54 BSC		0.100 BSC	
P	-	1.27		0.050
R	1.37 BSC		0.054 BSC	
T	-	0.76		0.030
U	2.54		0.100	

 \emptyset N C

STYLE 1:	
PIN 1.	EMITTER
2.	BASE
3.	COLLECTOR

STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE & CASE

STYLE 7: PIN 1. ANODE 2. BASE 3. CATHODE

STYLE 10: PIN 1. BASE 2. EMITTER 3. BASE

STYLE 2: PIN 1. SOURCE, SUBSTRATE & CASE 2. GATE 3. DRAIN

STYLE 5: PIN 1. EMITTER 2. BASE 1 3 BASE 2

STYLE 8: PIN 1. GATE 2. ANODE 1 3. ANODE 2

STYLE 11:
PIN 1. DRAIN
2. GATE
3. SOURCE, SUBSTRATE

STYLE 3: PIN 1. SOURCE 2. DRAIN 3. GATE

STYLE 6: PIN 1. CATHODE 2. GATE 3. ANODE

STYLE 9: PIN 1. ANODE 2 2. ANODE 1 3. GATE

(CONNECTED TO CASE)

STYLE 12: PIN 1. SOURCE 2. GATE 3. DRAIN (CASE)

DOCUMENT NUMBER:	98AON45207E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-18 3-LEAD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked to demonstrate the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales