

Low Voltage Quad 2-Input AND Gate with 3.6 V Tolerant Inputs and Outputs

74ALVC08

General Description

The ALVC08 contains four 2-input AND gates. This product is designed for low voltage (1.65 V to 3.6 V) V_{CC} applications with I/O compatibility up to 3.6 V.

The ALVC08 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- 1.65 V to 3.6 V V_{CC} Supply Operation
- 3.6 V Tolerant Inputs and Outputs
- t_{PΓ}
 - ◆ 2.9 ns Max for 3.0 V to 3.6 V V_{CC}
 - \bullet 3.2 ns Max for 2.3 V to 2.7 V V_{CC}
 - ◆ 5.3 ns Max for 1.65 V to 1.95 V V_{CC}
- Power-off High Impedance Inputs and Outputs
- Uses Quiet Series Noise/EMI Reduction Circuitry
- Latchup Conforms to JEDEC JED78
- ESD Performance:
 - ♦ Human Body Model > 2000 V
 - ♦ Machine Model > 250 V
- These Devices are Pb-Free and Halide Free

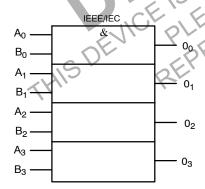
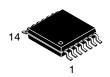



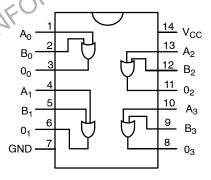
Figure 1. Logic Diagram

PIN DESCRIPTION

Pin	Description
A _{n,Bn}	Inputs
O _n	Outputs

1

TSSOP-14 WB CASE 948G


MARKING DIAGRAM

Z = Assembly Location 2 = 2-Digit Date Code (Year & Week) K = Lot Run Traceability Code

CONNECTION DIAGRAM

Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
74ALVC08MTCX	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

74ALVC08

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to + 4.6	V
VI	DC Input Voltage	-0.5 to + 4.6	V
V _O	Output Voltage (Note 1)	-0.5 to V _{CC} + 0.5	V
lık	DC Input Diode Current VI < 0 V	-50	mA
lok	DC Output Diode Current V _O < 0 V	-50	mA
I _{OH} /I _{OL}	DC Output Source / Sink Current	±50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±100	mA
T _{STG}	Storage Temperature	−65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	1.65	3.6	V
VI	Input Voltage	0	V _{CC}	V
Vo	Output Voltage	0 617	V _{CC}	V
T _A	Free Air Operating Temperature	-40	+85	°C
Δt / ΔV	Input Edge Rate, V _{IN} = 0.8 V to 2.0 V, V _{CC} = 3.0 V	ROPINI	5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond 1. I_O Absolute Maximum Rating must be observed, limited to 4,6 V.

2. Floating or unused control inputs must be held HIGH or LOW. the Recommended Operating Ranges limits may affect device reliability.

74ALVC08

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage		1.65 – 1.95	0.65 x V _{CC}	-	V
			2.3 –2.7	1.7	-	
			2.7 – 3.6	2.0	-	
V _{IL}	LOW Level Input Voltage		1.65 – 1.95	-	0.35 x V _{CC}	V
			2.3 -2.7	-	0.7	
			2.7 – 3.6	-	0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 – 3.6	V _{CC} _ 0.2	-	V
		$I_{OH} = -4 \text{ mA}$	1.65	1.2	-	
		$I_{OH} = -6 \text{ mA}$	2.3	2.0	-	
		I _{OH} = -12 mA	2.3	1.7	-	
			2.7 3.0	2.2 2.4	(No	
		I _{OH} = -24 mA	3.0	2	161G)	
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	V
		I _{OL} = 4 mA	1.65	N	0.45	
		I _{OL} = 6 mA	2.3	ME	0.4	
		I _{OL} = 12 mA	2.3 2.7	ami o	0.7 0.4	
		I _{OL} = 24 mA	3.0	4/10	0.55	
I _I	Input Leakage Current	$0 \le V_1 \le 3.6 \text{ V}$	3.6	Mr-	±5.0	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6	-	40	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6 \text{ V}$	3 - 3.6	-	750	μΑ

		70,0		-40°C to +8	35°C, R _L = 5	ίοο Ω			
		€ _L =	50 pF			C _L =	30 pF		
		$V_{CC} = 3.3 \text{ V } \pm 0.3 \text{ V}$	V _{CC} =	2.7 V	V _{CC} = 2.5	5 V ±0.2 V	V _{CC} = 1.8	V ±0.15 V	
Symbol	Parameter	Min. Max.	Min.	Max	Min	Max	Min	Max	Unit
t _{PHL} , t _{PLH}	Propagation Delay	1.2 2.9	_	3.0	1.0	3.2	1.2	5.3	ns

CAPACITANCE

			T _A = +	-25°C	
Symbol	Parameter	Conditions	V _{CC}	Тур	Unit
C _{IN}	Input Capacitance	V _I = 0 V or V _{CC}	3.3	4.5	pF
C _{PD}	Power Dissipation Capacitance	f = 10 MHz, C _L = 50 pF	3.3	26	pF
			2.5	25	
			1.8	24	

74ALVC08

AC LOADING AND WAVEFORMS

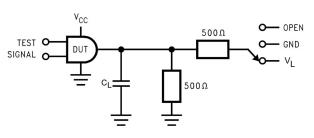
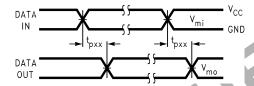


Figure 2. AC Test Circuit

Table 1. VALUES FOR FIGURE 2

Test	Switch	
t _{PLH} , t _{PHL}	Open	Open



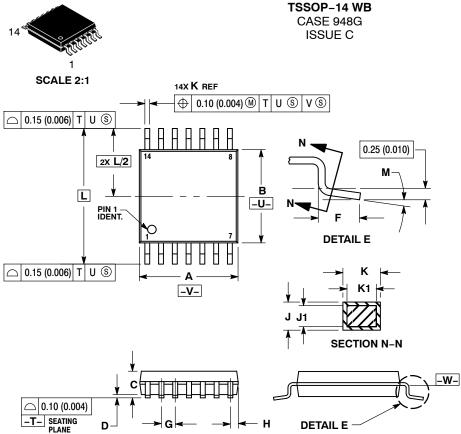

Figure 3. Waveform for Inverting and Non-Inverting Functions

Table 2. VARIABLE MATRIX (Input Characteristics; f = 1 MHz, $t_f = t_f = 2$ ns.

		DATA OUT	V _{mi} V _{CC} GND	EN DESIGN
		Figure 3. Waveform for In	verting and	
		Non-Inverting Fund	etions	1. 1.
			OF ON	OK
			SED ansu	TIC
ole 2. VARIA	ABI F MATRIX (Input Ch	aracteristics: f = 1 MHz t _r = t _f = 2 r	$7_0 = 5(0)$	
	DEE MATTEX (mpat on	arastoriotios, 1 – 1 m 12, t ₁ – t ₁ – 2 1	10, 20 -0 32	
		V _{cc}	1/2, 1/2	
Symbol	3.3 V ±0.3 V	2.7V	2.5 V ±0.2 V	1.8 V ± 0.15 V
Symbol V _{mi}	1.5 V	Non–Inverting Fundamental Non–Inverting Fun	2.5 V ±0.2 V V _{CC} /2	1.8 V ± 0.15 V V _{CC} /2
	1.5 V	2.7 V 1.5 V 1.5 V	2.5 V ±0.2 V V _{CC} /2 V _{CC} /2	1.8 V ± 0.15 V V _{CC} /2 V _{CC} /2

DATE 17 FEB 2016

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 TERMINAL NUMBERS ARE SHOWN FOR DEEEDENIC OMITY.
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
М	0°	8 °	0 °	8 °

GENERIC MARKING DIAGRAM*

= Assembly Location

L = Wafer Lot = Year

= Work Week W = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED SOLDERING FOOTPRINT*

-	7.06
1	
	-
	U 0.65 PITCH
↓ □	The state of the s
14X 0.36	
0.36 - 1.26	DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Documer Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red		
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales