

Quad 2-Input Multiplexer 74VHC157

The VHC157 is an advanced high speed CMOS Quad 2-Channel Multiplexer fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

It consists of four 2-input digital multiplexers with common select and enable inputs. When the ENABLE input is held "H" level, selection of data is inhibited and all the outputs become "L" level. The SELECT decoding determines whether the I 0x or I 1x inputs get routed to their corresponding outputs.

An Input protection circuit ensures that 0 V to 5.5 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and on two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- High Speed: $t_{PD} = 4.1$ ns (Typ.) at $V_{CC} = 5$ V
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max.) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power Down Protection is Provided On All Inputs
- Low Noise: V_{OLP} = 0.8 V (Max.)
- Pin and Function Compatible with 74HC157

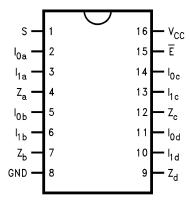
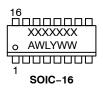


Figure 1. Connection Diagram

PIN DESCRIPTION

Pin Names	Description			
I _{0a} -I _{0d}	Source 0 Data Inputs			
I _{1a} -I _{1d}	Source 1 Data Inputs			
_ E	Enable Input			
s	Select Input			
Z _a -Z _d	Outputs			

SOIC-16 D SUFFIX CASE 751B



TSSOP-16 DT SUFFIX CASE 948F

QFN16 MN SUFFIX CASE 485AW

MARKING DIAGRAMS

TSSOP-16

QFN16*

XXXXXXX = Specific Device Code
A = Assembly Location
WL, L = Wafer Lot
YY,Y = Year

YY,Y = Year WW, W = Work Week G, ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

1

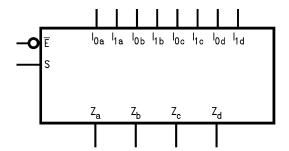
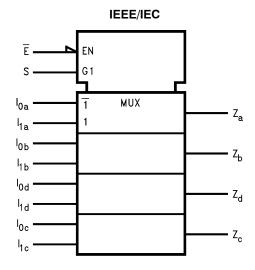



Figure 2. Logic Symbol

TRUTH TABLE

	Outputs			
Ē	S	l _o	I ₁	Z
Н	Х	Х	Х	L
L	Η	Х	L	L
L	Н	Х	Н	Н
L	L	L	Х	L
L	L	Н	Х	Н

H = HIGH Voltage Level

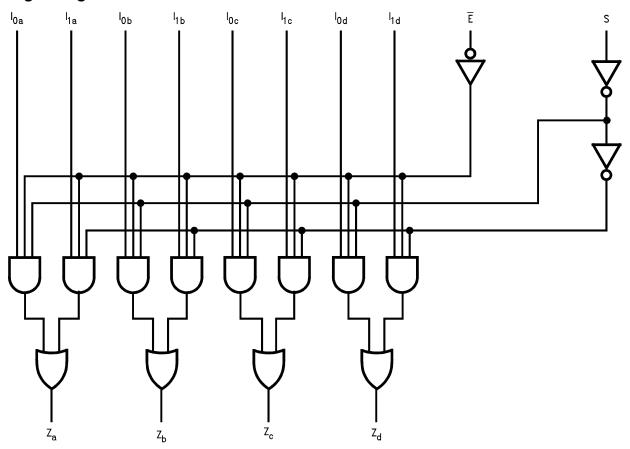
L = LOW Voltage Level

X = Immaterial

FUNCTIONAL DESCRIPTION

The VHC157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\overline{E}) is active– LOW. When \overline{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The VHC157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$Z_a = \overline{E} \cdot (I_{1a} \cdot S + I_{0a} \cdot \overline{S})$$


$$Z_b = \overline{E} \cdot (I_{1b} \cdot S + I_{0b} \cdot \overline{S})$$

$$Z_c = \overline{E} \cdot (I_{1c} \cdot S + I_{0c} \cdot \overline{S})$$

$$Z_d = \overline{E} \cdot (I_{1d} \cdot S + I_{0d} \cdot \overline{S})$$

A common use of the VHC157 is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The VHC157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to +6.5	V
V _{OUT}	DC Output Voltage		-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin		±20	mA
I _{OUT}	DC Output Current, per Pin		±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±50	mA
I _{IK}	Input Clamp Current		-20	mA
lok	Output Clamp Current		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
T _L	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θЈА	Thermal Resistance (Note 2)	SOIC-16 QFN16 TSSOP-16	126 118 159	°C/W
P _D	Power Dissipation in Still Air at 25°C	SOIC-16 QFN16 TSSOP-16	995 1062 787	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.139 in	-
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 N/A	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Applicable to devices with outputs that may be tri-stated.
- Measured with minimum pad spacing on an FR4 board, using 76mm-by-114mm, 2-ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	М	lin	Max	Unit
V _{CC}	DC Supply Voltage	2	2.0	5.5	٧
V _{IN}	DC Input Voltage (Note 4)		0	5.5	V
V _{OUT}	DC Output Voltage (Note 4)		0	V _{CC}	V
T _A	Operating Temperature		40	+85	°C
t _r , t _f		V to 3.6 V 5 V to 55 V	0 0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS

						T _A = 25°C		T _{A =} -40°C	c to +85°C	
Symbol	Parameter	Co	nditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage			2.0 3.0 – 5.5	1.50 0.7 x V _{CC}			1.50 0.7 x V _{CC}		V
V _{IL}	LOW Level Input Voltage			2.0 3.0 – 5.5			0.50 0.3 x V _{CC}		0.50 0.3 x V _{CC}	V
V _{OH}	HIGH Level Output Voltage	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		V
			I _{OH} = -4 mA I _{OH} = -8 mA	3.0 4.5	2.58 3.94			2.48 3.80		
V _{OL}	LOW Level Output Voltage	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 μA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	V
			I _{OH} = 4 mA I _{OH} = 8 mA	3.0 4.5			0.36 0.36		0.44 0.44	
I _{IN}	Input Leakage Current	V _{IN} = 5.5 \	or GND	0 – 5.5			± 0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC}	or GND	5.5			4.0		40.0	μΑ

NOISE CHARACTERISTICS

				T _A = 25°C		
Symbol	Parameter	Conditions	V _{CC} (V)	Тур	Limits	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL} (Note 3)	CL = 50 pF	5.0	0.3	0.8	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL} (Note 3)	CL = 50 pF	5.0	-0.3	-0.8	V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage (Note 3)	CL = 50 pF	5.0		3.5	V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage (Note 3)	CL = 50 pF	5.0		1.5	V

^{5.} Parameter guaranteed by design.

AC ELECTRICAL CHARACTERISTICS

				Т	_A = 25°	С	T _{A =} -40°C	c to +85°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} , F t _{PHL}	Propagation Delay, I _n to Z _n	C _L = 15pF C _L = 50pF	3.3 ± 0.3		6.2 8.7	9.7 13.2	1.0 1.0	11.5 15.0	ns
		C _L = 15pF C _L = 50pF	5.0 ± 0.5		4.1 5.6	6.4 8.4	1.0 1.0	7.5 9.5	
t _{PLH} , t _{PHL}	Propagation Delay, S to Z _n	C _L = 15pF C _L = 50pF	3.3 ± 0.3		8.4 10.9	13.2 16.7	1.0 1.0	15.5 19.0	ns
		C _L = 15pF C _L = 50pF	5.0 ± 0.5		5.3 6.8	8.1 10.1	1.0 1.0	9.5 11.5	
t _{PLH} , t _{PHL}	Propagation Delay, \overline{E} to Z_n	C _L = 15pF C _L = 50pF	3.3 ± 0.3		8.7 11.2	13.6 17.1	1.0 1.0	16.0 19.5	ns
		C _L = 15pF C _L = 50pF	5.0 ± 0.5		5.6 7.1	8.6 10.6	1.0 1.0	10.0 12.0	

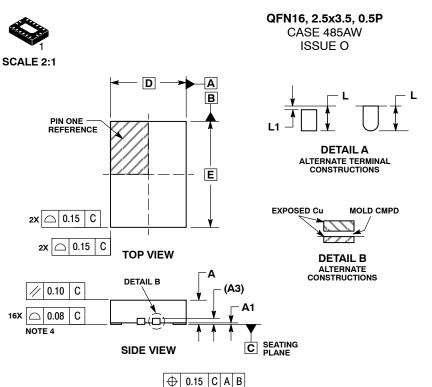
AC ELECTRICAL CHARACTERISTICS (continued)

				T _A = 25°C		$T_{A} = -40^{\circ} \text{C to } +85^{\circ} \text{C}$			
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
C _{IN}	Input Capacitance	V _{CC} = Open			4	10	-	10	pF
C _{PD}	Power Dissipation Capacitance	(Note 3)			20	1	-	-	pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}.

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
74VHC157MX	VHC157	SOIC-16	2500 / Tape & Reel
74VHC157MTCX	VHC 157	TSSOP-16	2500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DETAIL A

е

e/2

⊕ 0.15 C A B

16X b

Ф 0.05 C NOTE 3

0.10 C A B

E2

BOTTOM VIEW

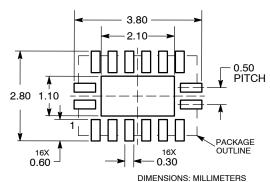
DATE 11 DEC 2008

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSIONS & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIN	MILLIMETERS				
DIM	MIN	MAX				
Α	0.80	1.00				
A1	0.00	0.05				
A3	0.20	REF				
b	0.20	0.30				
D	2.50	BSC				
D2	0.85	1.15				
E	3.50	BSC				
E2	1.85	2.15				
е	0.50	BSC				
K	0.20					
L	0.35	0.45				
L1		0.15				

GENERIC MARKING DIAGRAM*


= Specific Device Code XXXX

Α = Assembly Location = Wafer Lot L Υ = Year W = Work Week

= Pb-Free Package (Note: Microdot may be in either location)

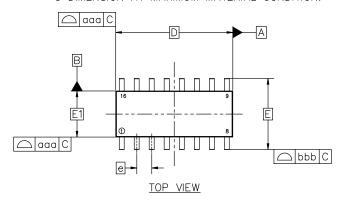
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■" may or may not be present. Some products may not follow the Generic Marking.

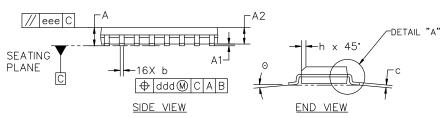
RECOMMENDED SOLDERING FOOTPRINT*

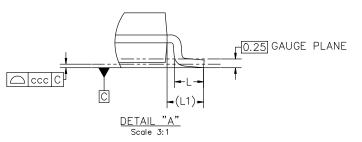
*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON36347E	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	QFN16, 2.5X3.5, 0.5P		PAGE 1 OF 1				

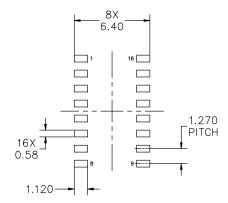
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.




SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M


DATE 18 OCT 2024

NOTES:

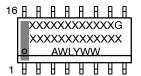

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS						
DIM	MIN	NOM	MAX			
А	1.35	1.55	1.75			
A1	0.10	0.18	0.25			
A2	1.25	1.37	1.50			
b	0.35	0.42	0.49			
С	0.19	0.22	0.25			
D		9.90 BSC				
E		6.00 BSC				
E1		3.90 BSC				
е		1.27 BSC				
h	0.25		0.50			
L	0.40	0.83	1.25			
L1		1.05 REF				
Θ	0.		7*			
TOLERAN	CE OF FC	RM AND	POSITION			
aaa		0.10				
bbb	0.20					
ccc	0.10					
ddd		0.25				
eee		0.10				

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 1 OF 2	


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location
WL = Wafer Lot

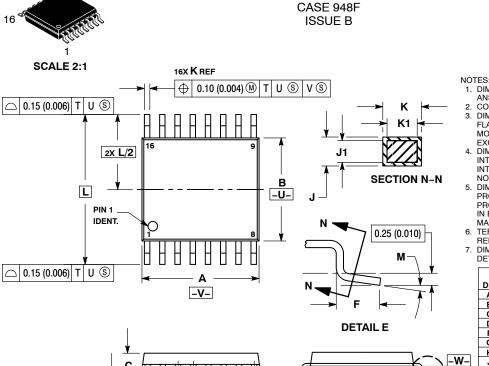
Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	,	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
4.	,	4.	CATHODE	4.			
5.	DRAIN, #3	5.		5.	COMMON DRAIN (OUTPUT)		
6.	DRAIN, #3	6.		6.	COMMON DRAIN (OUTPUT)		
7.	DRAIN, #4		CATHODE	7.	COMMON DRAIN (OUTPUT)		
8.	DRAIN, #4		CATHODE	8.	SOURCE P-CH		
	GATE, #4		ANODE	9.	SOURCE P-CH		
10.	SOURCE, #4		ANODE	10.			
11.	GATE, #3		ANODE	11.			
12		12	ANODE	12.			
	SOURCE, #3		-				
13.	GATE, #2	13.	ANODE	13.			
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		
13. 14. 15.	GATE, #2 SOURCE, #2 GATE, #1	13. 14. 15.	ANODE ANODE	14. 15.	COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
13. 14.	GATE, #2 SOURCE, #2	13. 14.	ANODE	14.	COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1.27P		PAGE 2 OF 2	

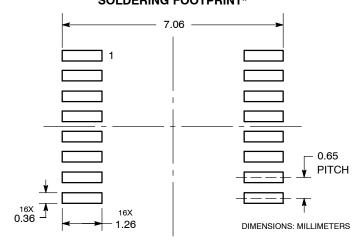
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


DATE 19 OCT 2006

☐ 0.10 (0.004)

SEATING PLANE

D



TSSOP-16 WB

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65 BSC		0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0 °	8°	0°	8 °	

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales