Switching Diode BAS16H ## **Features** - S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-------------------------|--|------| | Continuous Reverse Voltage | V _R | 100 | V | | Peak Forward Current | I _F | 200 | mA | | Non-Repetitive Peak Forward Surge
Current, 60 Hz | I _{FSM(surge)} | 1.8 | Α | | Repetitive Peak Forward Current (Note 2) | I _{FRM} | 1.0 | Α | | Non-Repetitive Peak Forward Current (Square Wave, $T_J = 25^{\circ}C$ prior to surge) $t = 1 \ \mu s$ $t = 10 \ \mu s$ $t = 100 \ \mu s$ $t = 1 \ ms$ $t = 10 \ ms$ $t = 100 \ ms$ $t = 1 \ s$ | IFSM | 36.0
18.0
6.0
3.0
1.8
1.3 | A | | ESD Rating: Human Body Model
Machine Model
Charged Device Model | ESD | Class 3A
Class M4
Class C3 | | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ## THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|-----------------------------------|---------------|-------| | Total Device Dissipation FR-5 Board (Note 1) | P_{D} | 200 | mW | | T _A = 25°C
Derate above 25°C | | 1.57 | mW/°C | | Thermal Resistance Junction to Ambient | $R_{\theta JA}$ | 635 | °C/W | | Junction and Storage Temperature | T _J , T _{stg} | –55 to
150 | °C | 1 - 1. FR-4 Minimum Pad. - 2. Square Wave, f = 40 kHz, PW = 200 ns Test Duration = 60 s, T_J = 25°C prior to surge. SOD-323 CASE 477 STYLE 1 # **MARKING DIAGRAM** A6 = Specific Device Code M = Date Code #### ORDERING INFORMATION | Device | Package | Shipping† | |------------|----------------------|---------------------| | BAS16HT1G | SOD-323
(Pb-Free) | 3000 / Tape & Reel | | SBAS16HT1G | SOD-323
(Pb-Free) | 3000 /T ape & Reel | | BAS16HT3G | SOD-323
(Pb-Free) | 10000 / Tape & Reel | | SBAS16HT3G | SOD-323
(Pb-Free) | 10000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |--|-------------------|------------------|----------------------------|------| | OFF CHARACTERISTICS | | | • | | | Reverse Voltage Leakage Current ($V_R = 100 \text{ Vdc}$) ($V_R = 75 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$) ($V_R = 25 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$) | I _R | -
-
- | 1.0
50
30 | μAdc | | Reverse Breakdown Voltage ($I_{BR} = 100 \mu Adc$) | V _(BR) | 100 | - | Vdc | | Forward Voltage $ \begin{aligned} &(I_F=1.0 \text{ mAdc})\\ &(I_F=10 \text{ mAdc})\\ &(I_F=50 \text{ mAdc})\\ &(I_F=50 \text{ mAdc})\\ &(I_F=150 \text{ mAdc}) \end{aligned} $ | V _F | -
-
-
- | 715
855
1000
1250 | mV | | Diode Capacitance
(V _R = 0, f = 1.0 MHz) | C _D | - | 2.0 | pF | | Forward Recovery Voltage (I _F = 10 mAdc, t _r = 20 ns) | V _{FR} | - | 1.75 | Vdc | | Reverse Recovery Time (I _F = I _R = 10 mAdc, R _L = 50 Ω) | t _{rr} | - | 6.0 | ns | | Stored Charge (I _F = 10 mAdc to V _R = 5.0 Vdc, R _L = 500 Ω) | Q _S | - | 45 | pC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. Notes: 1. A 2.0 $k\Omega$ variable resistor adjusted for a Forward Current (I_F) of 10 mA. - 2. Input pulse is adjusted so $I_{R(peak)}$ is equal to 10 mA. - $3. t_p * t_{rr}$ Figure 1. Recovery Time Equivalent Test Circuit ## BAS16H # **TYPICAL CHARACTERISTICS** Figure 2. Forward Voltage Figure 3. Leakage Current Figure 4. Capacitance Figure 5. Maximum Non-repetitive Peak Forward Current as a Function of Pulse Duration, Typical Values ## SOD-323 1.70x1.25x0.85 **CASE 477 ISSUE K** **DATE 11 MAR 2024** ## NOTES: - 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M, 2018. - CONTROLLING DIMENSION: MILLIMETERS. LEAD THICKNESS SPECIFIED PER L/F DRAWING WITH 3. SOLDER PLATING. - DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. DIMENSION L IS MEASURE FROM END OF RADIUS. TOP VIEW | DIM | MILLIMETERS | | | | |-------|-------------|------|------|--| | ויודע | MIN. | N□M. | MAX. | | | Α | 0.80 | 0.90 | 1.00 | | | A1 | 0.00 | 0.05 | 0.10 | | | A2 | 0.75 | 0.85 | 0.95 | | | АЗ | 0.15 (REF) | | | | | b | 0.25 | 0.32 | 0.4 | | | C | 0.09 | 0.12 | 0.18 | | | D | 1.60 | 1.70 | 1.80 | | | E | 1.15 | 1.25 | 1.35 | | | Н | 2.30 | 2.50 | 2.70 | | | L | 0.08 | | | | | L1 | 0.40 (REF) | | | | ## RECOMMENDED MOUNTING FOOTPRINT *For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D. ## **GENERIC MARKING DIAGRAM*** XX = Specific Device Code M = Date Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. STYLE 2: NO POLARITY PIN 1. CATHODE (POLARITY BAND) 2. ANODE | DOCUMENT NUMBER: | 98ASB17533C | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|------------------------|--|-------------|--| | DESCRIPTION: | SOD-323 1.70x1.25x0.85 | | PAGE 1 OF 1 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales