6-Channel EMI Filter Array with ESD Protection

Product Description

The CM1440 is a six channel low–pass EMI filter array with ESD protection that reduces EMI/RFI emissions while providing robust protection from ESD strikes. Each EMI filter channel integrates a high quality pi–style filter (30 pF – 100 Ω – 30 pF) which provides greater than 30 dB of attenuation in the 800 MHz to 2.7 GHz frequency range. The parts include avalanche–type ESD diodes on every pin, which provide a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The ESD protection diodes connected to the filter ports safely dissipate ESD strikes of $\pm 30~\rm kV$, beyond the maximum requirement of the IEC61000–4–2 international standard. Using the MIL–STD–883 (Method 3015) specification for Human Body Model (HBM) ESD, the pins are protected for contact discharges at greater than $\pm 30~\rm kV$.

This device is particularly well–suited for portable electronics (e.g. wireless handsets, PDAs, notebook computers) because of its small package and easy–to–use pin assignments. In particular, the CM1440 is ideal for EMI filtering and protecting data and control lines for the I/O data ports, LCD display and camera interface in mobile handsets.

The CM1440 incorporates $OptiGuard^{™}$ which results in improved reliability at assembly. The CM1440 is available in a space saving, low profile Chip Scale Package with RoHS-compliant lead-free finishing. It is manufactured with a 0.40 mm pitch and 0.25 mm CSP solder ball to provide up to 28% board space savings versus competing CSP devices with 0.50 mm pitch and 0.30 mm CSP solder ball.

Features

- Six Channels of EMI Filtering for Data Ports
- Pi-Style EMI Filters in a Capacitor-Resistor-Capacitor (C-R-C) Network
- ±30 kV ESD Protection on Each Channel (IEC 61000-4-2 Level 4, Contact Discharge)
- ±30 kV ESD Protection on Each Channel (HBM)
- Greater than 35 dB Attenuation (Typical) at 1 GHz
- 15-Bump, 0.4 mm pitch, 2.360 mm X 1.053 mm Footprint Chip Scale Package (CSP)
- Chip Scale Package Features Extremely Low Lead Inductance for Optimum Filter and ESD Performance
- *OptiGuard*[™] Coated for Improved Reliability at Assembly
- These Devices are Pb-Free and are RoHS Compliant

Applications

- LCD and Camera Data Lines in Mobile Handsets
- I/O Port Protection for Mobile Handsets, Notebook Computers, PDAs, etc.
- EMI Filtering for Data Ports in Cell Phones, PDAs or Notebook Computers

ON Semiconductor®

http://onsemi.com

WLCSP15 CP SUFFIX CASE 567BP

MARKING DIAGRAM

N406 M=

N406 = CM1440-06CP M = Date Code • Pb-Free Package

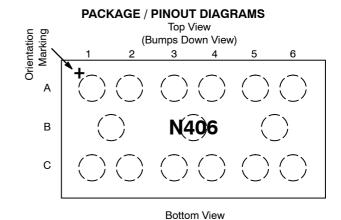
(Note: Microdot may be in either location)

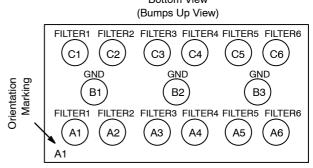
ORDERING INFORMATION

Device	Package	Shipping [†]
CM1440-06CP	CSP-15	3500/Tape & Reel
	(Pb-Free)	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- · Wireless Handsets
- Handheld PCs / PDAs
- LCD and Camera Modules


BLOCK DIAGRAM



*See Package/Pinout Diagrams for expanded pin information.

Table 1. PIN DESCRIPTIONS

15-bump CSP Package			
Pin	Name	Description	
A1	FILTER1	Filter Channel 1	
A2	FILTER2	Filter Channel 2	
АЗ	FILTER3	Filter Channel 3	
A4	FILTER4	Filter Channel 4	
A5	FILTER5	Filter Channel 5	
A6	FILTER6	Filter Channel 6	
B1-B3	GND	Device Ground	
C1	FILTER1	Filter Channel 1	
C2	FILTER2	Filter Channel 2	
СЗ	FILTER3	Filter Channel 3	
C4	FILTER4	Filter Channel 4	
C5	FILTER5	Filter Channel 5	
C6	FILTER6	Filter Channel 6	

CM1440-06CP 15 Bump CSP Package

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Storage Temperature Range	-65 to +150	°C
DC Power per Resistor	100	mW
DC Package Power Rating	500	mW

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R	Resistance		80	100	120	Ω
C _{TOTAL}	Total Channel Capacitance	At 2.5 VDC Reverse Bias, 1 MHz, 30 mVAC	48	60	72	pF
С	Capacitance	At 2.5 VDC Reverse Bias, 1 MHz, 30 mVAC	24	30	36	pF
V _{DIODE}	Standoff Voltage	I _{DIODE} = 10 μA		6.0		V
I _{LEAK}	Diode Leakage Current (reverse bias)	V _{DIODE} = 3.3 V		0.1	1.0	μΑ
V _{SIG}	Signal Voltage Positive Clamp Negative Clamp	I _{LOAD} = 10 mA	5.6 –1.5	6.8 -0.8	9.0 -0.4	٧
V _{ESD}	In-system ESD Withstand Voltage a) Human Body Model, MIL-STD-883, Method 3015 b) Contact Discharge per IEC 61000-4-2 Level 4	(Note 2)	±30 ±30			kV
R _{DYN}	Dynamic Resistance Positive Negative			2.3 0.9		Ω
f _C	Cut-off Frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω	R = 100 Ω, C = 30 pF		60		MHz

T_A = 25°C unless otherwise specified.
 ESD applied to input and output pins with respect to GND, one at a time.

PERFORMANCE INFORMATION

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

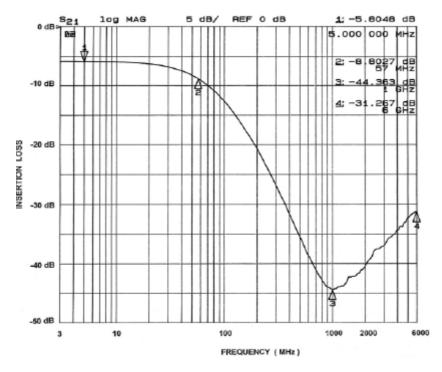


Figure 1. Insertion Loss vs. Frequency (A1-C1 to GND B1)

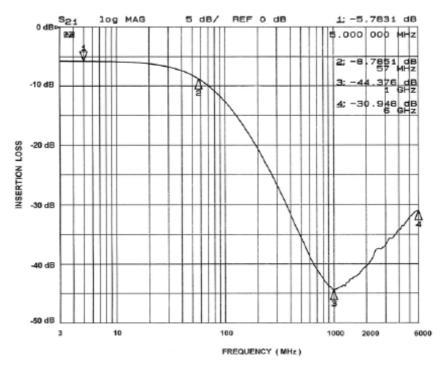


Figure 2. Insertion Loss vs. Frequency (A2-C2 to GND B1)

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

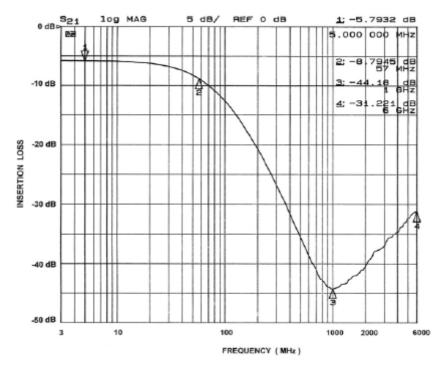


Figure 3. Insertion Loss vs. Frequency (A3-C3 to GND B2)

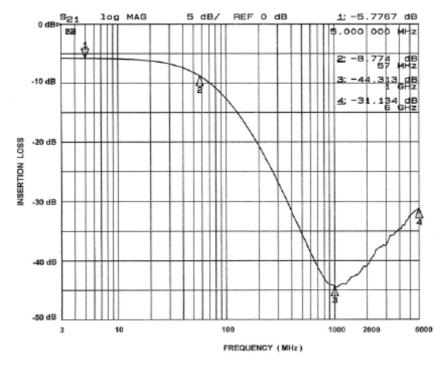


Figure 4. Insertion Loss vs. Frequency (A4-C4 to GND B2)

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (T_A = 25°C, DC Bias = 0 V, 50 Ω Environment)

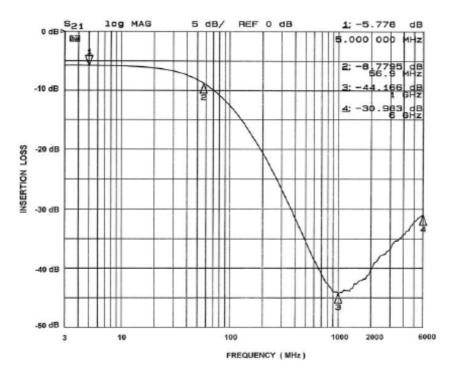


Figure 5. Insertion Loss vs. Frequency (A5-C5 to GND B3)

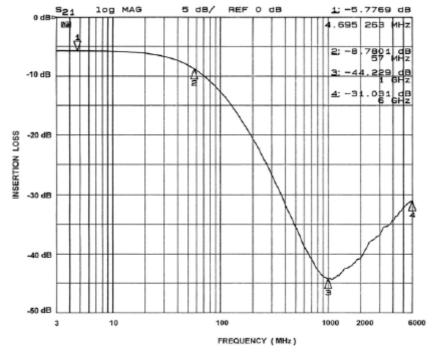


Figure 6. Insertion Loss vs. Frequency (A6-C6 to GND B3)

PERFORMANCE INFORMATION (Cont'd)

Typical Diode Capacitance vs. Input Voltage

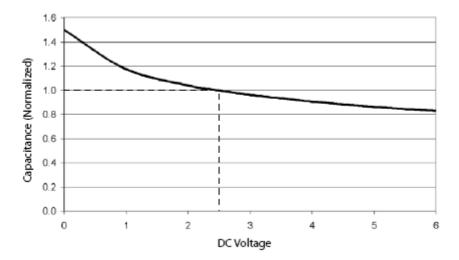


Figure 7. Filter Capacitance vs. Input Voltage (normalized to capacitance at 2.5 VDC and 25°C)

APPLICATION INFORMATION

Table 5. PRINTED CIRCUIT BOARD RECOMMENDATIONS

Parameter	Value
Pad Size on PCB	0.240 mm
Pad Shape	Round
Pad Definition	Non-Solder Mask defined pads
Solder Mask Opening	0.290 mm Round
Solder Stencil Thickness	0.125 – 0.150 mm
Solder Stencil Aperture Opening (laser cut, 5% tapered walls)	0.300 mm Round
Solder Flux Ratio	50/50 by volume
Solder Paste Type	No Clean
Pad Protective Finish	OSP (Entek Cu Plus 106A)
Tolerance – Edge To Corner Ball	±50 μm
Solder Ball Side Coplanarity	±20 μm
Maximum Dwell Time Above Liquidous	60 seconds
Maximum Soldering Temperature for Lead-free Devices using a Lead-free Solder Paste	260°C

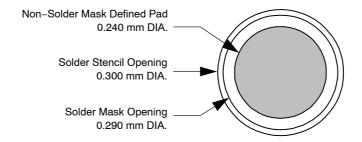


Figure 8. Recommended Non-Solder Mask Defined Pad Illustration

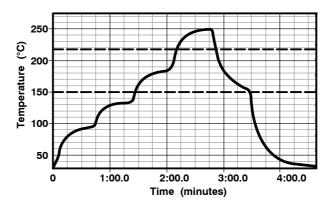


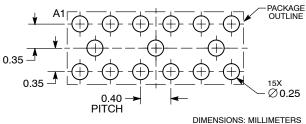
Figure 9. Lead-free (SnAgCu) Solder Ball Reflow Profile

WLCSP15, 2.36x1.05 CASE 567BP ISSUE O

A B

DATE 26 JUL 2010

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.57	0.72	
A1	0.17	0.24	
A2	0.42 REF		
b	0.24	0.29	
D	2.36 BSC		
E	1.05 BSC		
eD	0.400 BSC		
еE	0.347 BSC		

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

REFERENCE	N	
2X \(\triangle \) 0.05 \(\triangle \) \(\triangle \)		
2X 🔼 0.05 C	TOP VIEW	
// 0.05 C <u>↓</u>	OptiGuard Option	A
NOTE 3 A1	SIDE VIEW	C SEATING PLANE

D

15X ∅ b —	→ eD/2 → eD	
0.05 C A B C 0.03 C B-	+ + + + + + + + + + + + + + + + + + + 	eE
A	123 456 789	
	BOTTOM VIEW	

DOCUMENT NUMBER:	98AON49823E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WLCSP15, 2.36X1.05		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales