

Is Now Part of

OR NEW DESIGN

IN Semiconductor®

To k an more about CH Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor referses, employees, subsidiaries, and lisofficers, and designed, intended, or authorized for uses, and reasonable attorney fees arising out or, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an eg

May 2024

FAN7621B PFM Controller for Half-Bridge Resonant Converters

Features

FAIRCHILD

SEMICONDUCTOR

- Variable Frequency Control with 50% Duty Cycle for Half-bridge Resonant Converter Topology
- High Efficiency through Zero Voltage Switching (ZVS)
- Fixed Dead Time (350ns)
- Up to 300kHz Operating Frequency
- Pulse Skipping for Frequency Limit (Programmable) at Light-Load Condition
- Remote On/Off Control using CON Pin
- Protection Functions: Over-Voltage Protection (OVP), Overload Protection (OLP), Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Internal Thermal Shutdown (TSD)

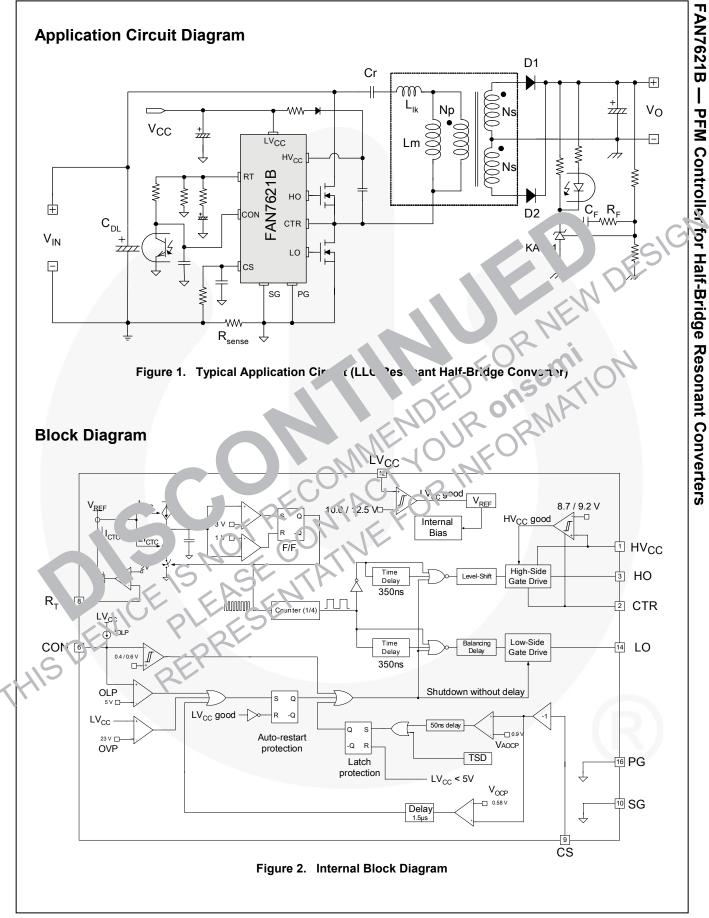
29

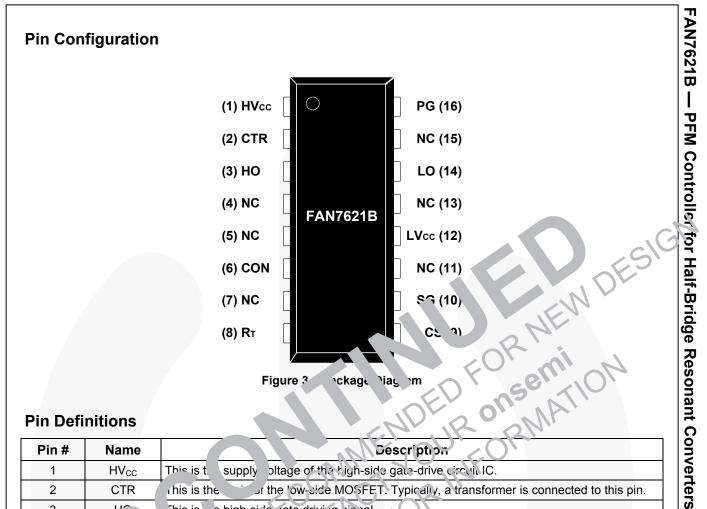
Applications

- PDP and LCD TVs
- Desktop PCs and Ser
- Adapters
- Telecom Po' up_k v
- Video Gan Co

Description

The FAN7621B is a pulse fr ency modulation controller for high-efficiency nalt-, dge resonant converters. Offering everything necess y to build a reliable and robust resc ant con. rter he FAN7621B simplifies designs a ir oves oductivity, while improving perform. ce. . FAN-7621B includes a highside gate-dr' e circ a e arate current controlled oscillator free ency it c.cuit, soft-start, and built-in protection inclus. T i high-side gate-drive circuit has non ode use cancellation capability, which a able operation with excellent noise ian tec Using the zero-voltage switching (ZVS) in hun techique dramatically reduces the switching losses and effici cy is significantly improved. The ZVS also reduces (ne switching ic'se noticeably, which allows a small-sized Electromagnetic Interference (EMI) filter.


The FAN7621B can be applied to various resonant converter topologies; such as series resonant, parallel resonant, and LLC reconant converters.


Related Resources

AN4151 — Half-bridge LLC Resonant Converter Design Using FSFR-series Fairchild Power Switch (FPSTM)

Oro ".g Information

Pari Number	Operating Junction	Package	Packaging Method
FAN7621BSJ	-40°C ~ 130°C	16-Lead Small Outline Package (SOP)	Tube
FAN7621BSJX	-40°C ~ 130°C	To-Lead Small Outline Package (SOP)	Tape & Reel

Pin Definitions

Pin #	Name	Description
1	HV _{cc}	This is t supply pltage of the high-side gate-drive circuit IC.
2	CTR	this is the or the low-side MOSFET. Typically, a transformer is connected to this pin.
3	μ'n	This is a high-side gate driving signal.
4	NC	Nnection.
5	NC	No connection.
G	LON	This pin is for a protection and enabling/disabling the controller. When the voltage of this pin is above 0.8% , the IC operation is enabled. When the voltage of this pin drops below $0.4V$, gate drive signals for both MOSFETs are disabled. When the voltage of this pin increases above $5V$, protection is triggered.
7	NC	No conne tion
8	RT	This pin programs the switching frequency. Typically, an opto-coupler is connected to control the switching frequency for the output voltage regulation.
9	CS	This pin senses the current flowing through the low-side MOSFET. Typically, negative voltage is applied on this pin.
10	SG	This pin is the control ground.
11	NC	No connection.
12	LV _{CC}	This pin is the supply voltage of the control IC.
13	NC	No connection.
14	LO	This is the low-side gate driving signal.
15	NC	No connection.
16	PG	This pin is the power ground. This pin is connected to the source of the low-side MOSFET.

© 2009 Fairchild Semiconductor Corporation

FAN7621B •

Absolute Maximum Ratings Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. T_A=25°C unless otherwise specified. Deremeter Τ 8.4

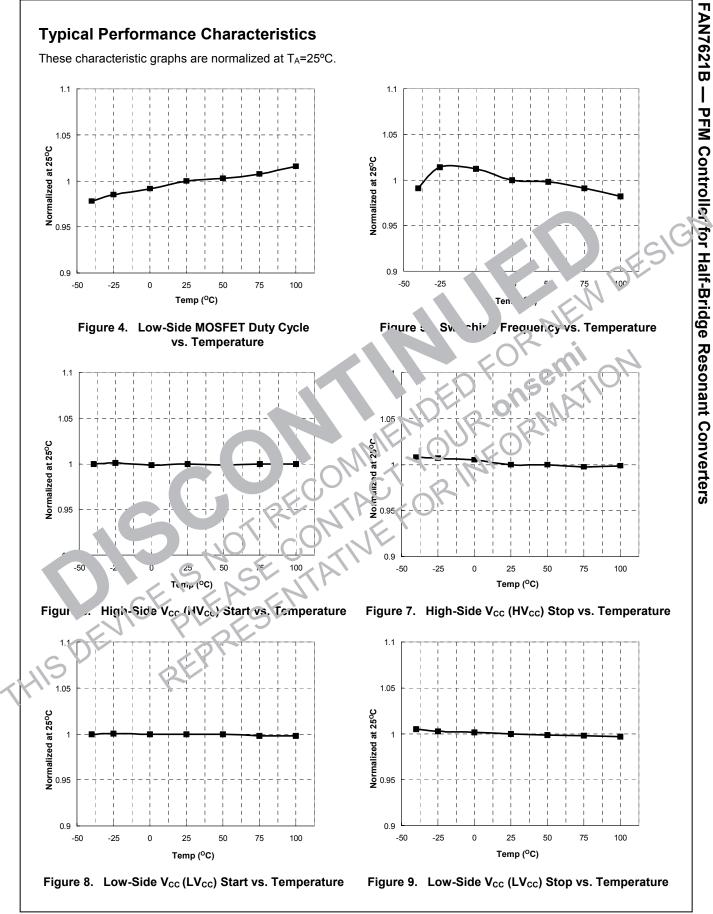
Symbol	Paran	neter	Min.	Max.	Unit
V _{HO}	High-Side Gate Driving Voltage		V _{CTR} -0.3	HV _{CC}	V
VLO	Low-Side Gate Driving Voltage		-0.3	LV _{CC}	v
LV _{CC}	Low-Side Supply Voltage		-0.3	25.0	V
HV_{CC} to V_{CTR}	High-Side V_{CC} Pin to Center Vo	ltage	-0.3	25.0	V
V _{CTR}	Center Voltage		-0.3	~	V
V _{CON}	Control Pin Input Voltage		-0.3	LV _{CC}	V
V _{CS}	Current Sense (CS) Pin Input V	/oltage	-F	0	v
V _{RT}	R⊤ Pin Input Voltage		-0.	5.0	V
dV _{CTR} /dt	Allowable Center Voltage Slew	Rate		50	V/ns
PD	Total Power Dissipation	16-SOP		1.13	W
Ŧ	Maximum Junction Temperatur	e ⁽¹⁾		+150	<u></u>
TJ	Recommended Operating Junc	tion Temp at (1)	-40		°C
T _{STG}	Storage Temperature Range		-55	+150	°C

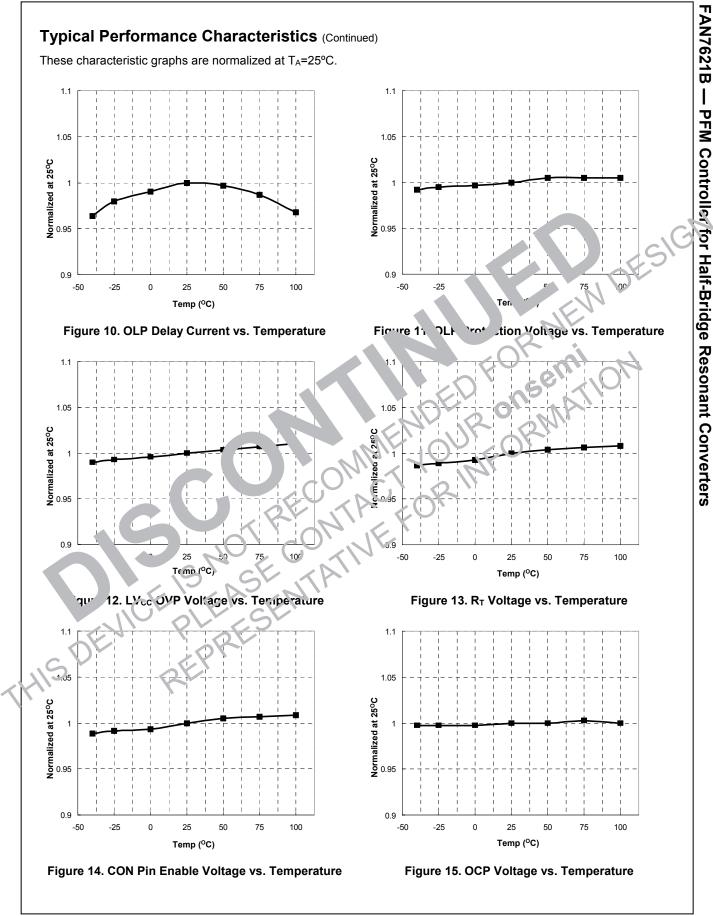
Note:

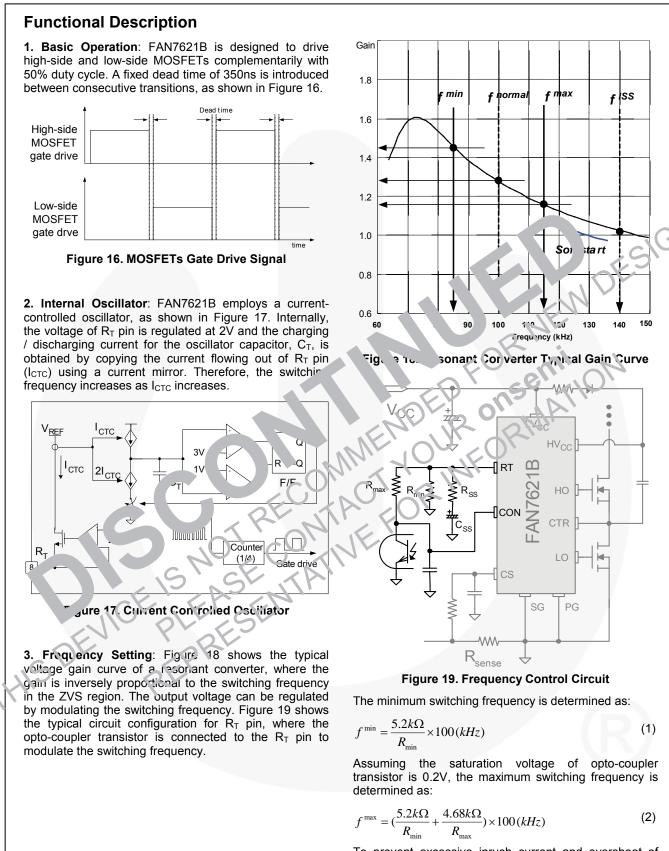
ner, ing junc on temperature is limited by thermal shutdown. 1. The maximum value of the recommenc

Thermal Impedance

Symbol	Parameter	× cor	Value	Unit
θ _{JA} J ~···	Amouent Thermal Imperiance	16-SOP	110	°C/W
HIS DEVICE	S NOSE OTATI	J. L.		R


Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
Supply Sec	tion					
I _{LK}	Offset Supply Leakage Current	HV _{CC} =V _{CTR}			50	μA
I_QHV_{CC}	Quiescent HVcc Supply Current	(HV _{CC} UV+) - 0.1V		50	120	μA
$I_{Q}LV_{CC}$	Quiescent LV _{cc} Supply Current	(LV _{CC} UV+) - 0.1V		100	200	μA
I ₀ HV _{cc}	Operating HV _{cc} Supply Current (RMS Value)	$f_{OSC}=100 kHz, V_{CON} > 0.6V, \\ C_{Load}=1nF$		5	8	mA
(No Switching, $V_{CON} < 0.4V$		50	200	μA
I _o LV _{cc}	Operating LV _{cc} Supply Current (RMS Value)	f_{OSC} =100kHz, V _{CON} > 0.6V, C _{Load} =1nF		ĥ	9	.nA
		No Switching, V _{CON} < 0.4		2	4	mA
UVLO Secti	on				\mathcal{V}	
LV _{CC} UV+	LV _{CC} Supply Under-Voltage Positive G	oing Threshold (L γ S (t)	11.2	195	13.8	V
LV _{cc} UV-	LV _{CC} Supply Under-Voltage Negative (Going Thresi Carthon Stop)	3.95	10.00	11.10	V
LV _{cc} UVH	LV _{CC} Supply Under-Voltage Hysteresis		2 S		V	
HV _{cc} UV+	HVcc Supply Under-Voltage Positing Goin, Thresh 1 (HVc; Start)			9.2	10.2	V
HV _{cc} UV-	HVcc Supply Under-Voltage "reshold (1Vcc Stop)			57	9.6	V
HVccUVH	HVcc Supply Under-Voltage mativ Going reshold (HV c Stop) 7.8 9.6 N HVcc Supply Under-V H, teres 0.5 N					
Oscillator 8	Feedback Section	VIA, 10 1				
V _{CONDIS}	Control Pi Jisable	OH CT OH	0.36	0.40	0.44	V
V _{CONEN}	Control P Enable Threshold Voitage	AN ON	0.54	0.60	0.66	V
V _{RT}	-1 Comprete, ushold Voltage	ALC Y	1.5	2.0	2.5	V
fosc	Output C sillation Frequency		94	100	106	kHz
DC	tput Dut <u>r</u> Cycle		48	50	52	%
f _{SS}	Interral Solt-Start Initial Frequency	f _{ss} =f _{osc} +40kHz, R⊤=5.2kΩ	7	140		kHz
	Inernal Soft Start Time		2	3	4	ms
Output Sac	tion					1
Isource	Peak Sourcing Current	HV _{cc} =17V	250	360		mA
Isink	Peak Sirking Current	HV _{cc} =17V	460	600		mA
tr	Rising Time			65		ns
t _f	Falling Time	C _{Load} =1nF, HV _{CC} =17V	/	35		ns
V _{HOH}	High Level of High-Side Gate Driving Signal (V _{HVCC} -V _{HO})				1.0	v
V _{HOL}	Low Level of High-Side Gate Driving Signal	L=20m4			0.6	V
V_{LOH}	High Level of High-Side Gate Driving Signal (V_{LVCC} - V_{LO})	– I ₀ =20mA			1.0	V
V _{LOL}	Low Level of High-Side Gate Driving Signal				0.6	v


5


Electrical Characteristics (Continued)

 T_A =25°C and LV_{CC}=17V unless otherwise specified.

	Parameter Test Conditions		Min.	Тур.	Max.	Un
Protection	n Section					
IOLP	OLP Delay Current	V _{CON} =4V	3.8	5.0	6.2	μA
V _{OLP}	OLP Protection Voltage	V _{CON} > 3.5V	4.5	5.0	5.5	V
VOVP	LV _{CC} Over-Voltage Protection	LV _{CC} > 21V	21	23	25	V
VAOCP	AOCP Threshold Voltage		-1.0	-0.9	-0.8	V
t _{BAO}	AOCP Blanking Time			F		ns
V _{OCP}	OCP Threshold Voltage		-0.64	0.58	0.52	V
t _{BO}	OCP Blanking Time ⁽²⁾		1.0	7	2.0	۲ ⁴
t _{DA}	Delay Time (Low-Side) Detecting from V_{AOCP} to Switch Off ⁽²⁾			_50	400	ns
T _{SD}	Thermal Shutdown Temperature ⁽²⁾		110	130	150	°C
I _{SU}	Protection Latch Sustain LV _{CC} Supply Current	LV _{cc} 5V	OR	100	150	μA
V _{PRSET}	Protection Latch Reset LV _{CC} Supply Voltage	ED	5	6	0,	v
Dead-Time	Control Section	NP 2	0			
D⊤ lote:	Dead Time	texted in production.	I OP	350		ns
D⊤ Note:	Dead Time	testeu in production.	FOR	350		ns

To prevent excessive inrush current and overshoot of output voltage during startup, increase the voltage gain of the resonant converter progressively. Since the voltage gain of the resonant converter is inversely AN7621B

I

PFM Controller for Half-Bridge Resonant Converters

proportional to the switching frequency, the soft-start is implemented by sweeping down the switching frequency from an initial high frequency (f^{ISS}) until the output voltage is established. The soft-start circuit is made by connecting R-C series network on the R_T pin, as shown in Figure 19. FAN7621B also has an internal soft-start for 3ms to reduce the current overshoot during the initial cycles, which adds 40kHz to the initial frequency of the external soft-start circuit, as shown in Figure 20. The initial frequency of the soft-start is given as:

$$f^{ISS} = \left(\frac{5.2k\Omega}{R_{\min}} + \frac{5.2k\Omega}{R_{SS}}\right) \times 100 + 40 \ (kHz) \tag{3}$$

It is typical to set the initial (soft-start) frequency of two ~ three times the resonant frequency (f_0) of the resonant network.

The soft-start time is three to four times the RC time constant. The RC time constant is as follows:

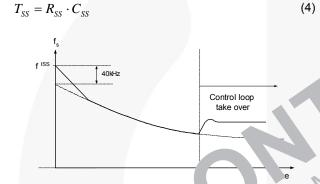


Figure 20. Frequenc Jep. 7 of S. t-Start

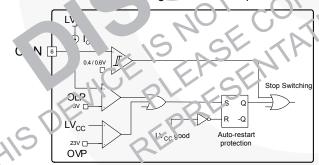
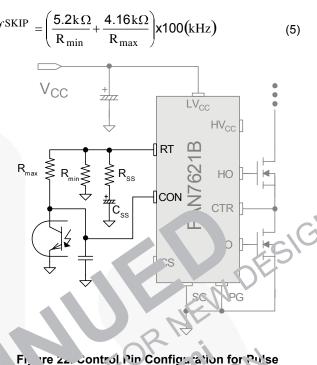
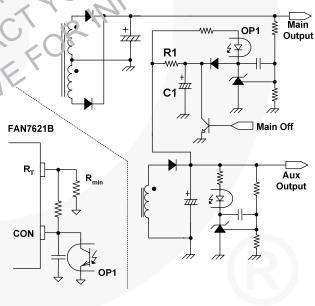
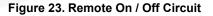



Figure 21. Internal Block of Control Pin


Protection: When the control pin voltage exceeds 5V, protection is triggered. Detailed applications are described in the protection section.


Pulse Skipping: FAN7621B stops switching when the control pin voltage drops below 0.4V and resumes switching when the control pin voltage rises above 0.6V. To use pulse-skipping, the control pin should be connected to the opto-coupler collector pin. The frequency that causes pulse skipping is given as:

Skipping

Remote On 'On: When an auxiliary power supply is used for standby, the main power stage using FAN76213 can be shot down try builting down the control pin voltage as shown in Figure 23. R1 and C1 are used to ensure soft-start when switching resumes.

5. Protection Circuits: The FAN7621B has several selfprotective functions, such as Overload Protection (OLP), Over-Current Protection (OCP), Abnormal Over-Current Protection (AOCP), Over-Voltage Protection (OVP), and Thermal Shutdown (TSD). OLP, OCP, and OVP are auto-restart mode protections; while AOCP and TSD are latch-mode protections, as shown in Figure 24. Auto-Restart Mode Protection: Once a fault condition is detected, switching is terminated and the MOSFETs remain off. When LV_{CC} falls to the LV_{CC} stop voltage of 10.0V, the protection is reset. FAN7621B resumes normal operation when LV_{CC} reaches the start voltage of 12.5V.

Latch-Mode Protection: Once this protection is triggered, switching is terminated and the gate output signals remain off. The latch is reset only when LV_{CC} is discharged below 5V.

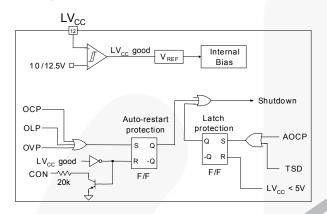
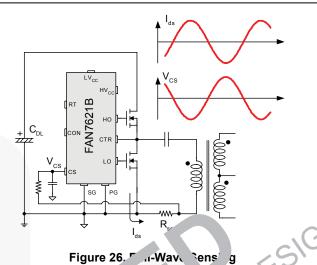
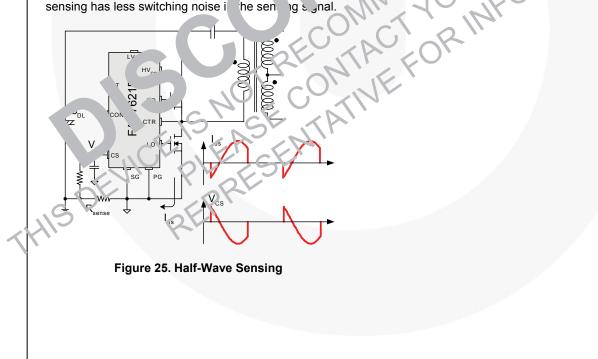



Figure 24. Protection Blocks

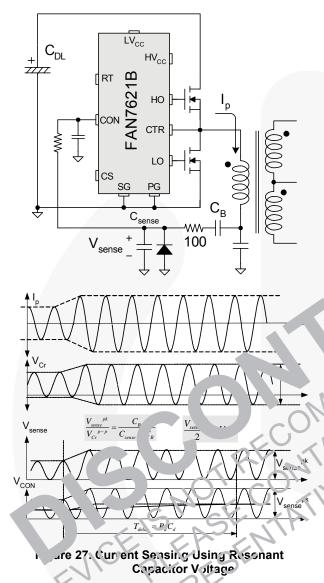
Current Sensing Using Resistor: FAN7621B nses drain current as a negative voltage, as showing F irre 25 and Figure 26. Half-wave sensing resigned ways awy in dissipation in the sensing resigned or itele ill-wave sensing has less switching noise in the sen ing signal.

Current Sensing ''sin, **F** sonant sensing 'using a resistor may be allowed up to the severe power dissipation in the resistor. In that base, indirect current sensing using the maintenance apactor voltage can be a rook in the resonant capacitor voltage can be a rook in the resonant capacitor voltage can be a rook in the primary side $(I_p^{p,p})_{p,2}$.


(6)

Т

AN7621B


I

PFM Controller for Half-Bridge Resonant Converters

FAN7621B — PFM Controller for Half-Bridge Resonant Converters

To minimize power dissipation, a capacitive voltage divider is generally used for capacitor voltage sensing, as shown in Figure 27.

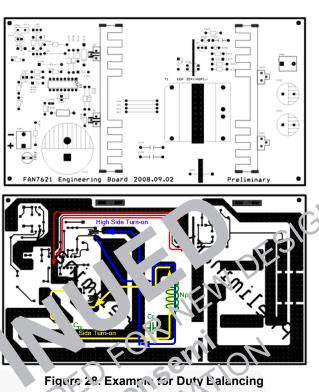
5.1 Cver Current Protection (CCP). When the sensing pin voltage drops below -C.6V, OCP is triggered and the MOSFETs remain off. This protection has a shutdown time delay of 1.5µs to prevent premature shutdown during startup.

5.2 Abnormal Over-Current Protection: **(AOCP)**: If the secondary rectifier diodes are shorted, large current with extremely high di/dt can flow through the MOSFET before OCP or OLP is triggered. AOCP is triggered without shutdown delay when the sensing pin voltage drops below -0.9V. This protection is latch mode and reset when LV_{CC} is pulled down below 5V.

5.3 Overload Protection (OLP): Overload is defined as the load current exceeding its normal level due to an unexpected abnormal event. In this situation, the protection circuit should trigger to protect the power supply. However, even when the power supply is in the normal condition, the overload situation can occur during the load transition. To avoid provide triggering of protection, the overload prot ion in uit should be designed to trigger only after a sprified time to determine whether it is , transic ' sity don or a me overload situation. Fig 9 2 show . typical cverload protection circuit. v s sing t'e resonant capacitor voltage on the contrumin, e erload or direction can be implemented. 'sing) tin a constant, shutdown delay can be a h in hduc . The watte ge obtained on the in it nive. COL

(7)

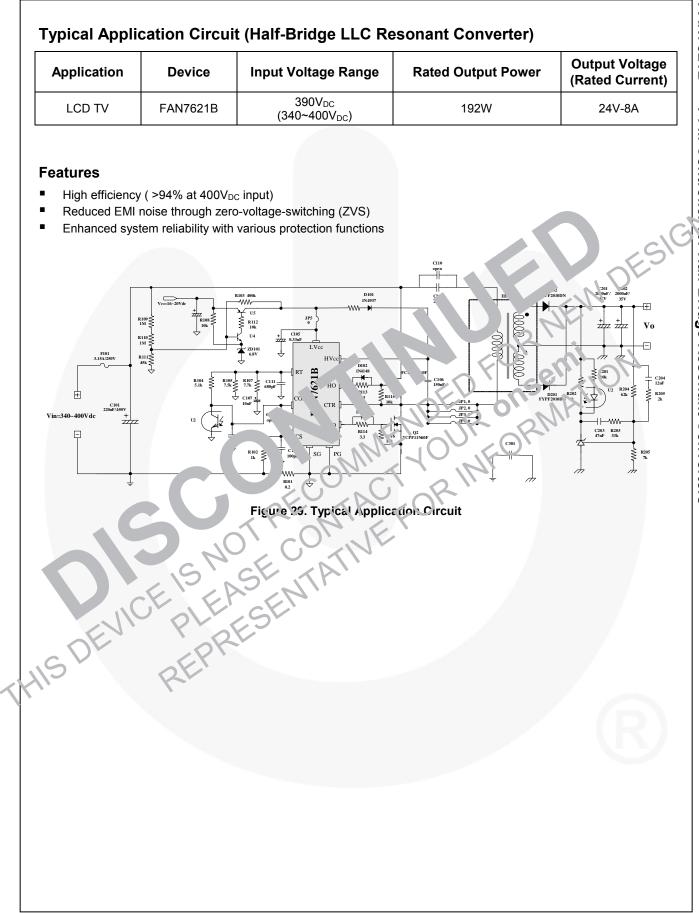
where V_{C} is the amplitude of the resonant capacitor voltage.


5.4 Over-Voltage Protection: (OVP): When the LV_{CC} reaches 23V, DVP is triggered. This protection is used when auxiliary winding of the transformer to supply V_{CC} to the controller is utilized.

5.5 Thermal Shutdown (TSD): If the temperature of the junction exceeds approximately 130°C, the thermal shutdown triggers.

6. PCB Layout Guideline: Duty imbalance problems may occur due to the radiated noise from main transformer, the inequality of the secondary-side leakage inductances of main transformer, and so on. Among them, it is one of the dominant reasons that the control components in the vicinity of R_T pin are enclosed by the primary current flow pattern on PCB layout. The direction of the magnetic field on the components caused by the primary current flow is changed when the high-and-low side MOSFET turns on by turns. The magnetic fields with opposite direction from each other induce a current through, into, or out of the RT pin, which makes the turnon duration of each MOSFET different. It is strongly recommended to separate the control components in the vicinity of R_T pin from the primary current flow pattern on PCB layout. Figure 28 shows an example for the dutybalanced case. The yellow and blue lines show the primary current flows when the lower-side and higherside MOSFETs turns on, respectively. The primary current does not enclose any component of controller.

In addition, it is helpful to reduce the duty imbalance to make the loop configured between CON pin and optocoupler as small as possible, as shown in the red line in Figure 28.


FASE

Т

SDEVICE

SENTATIVEFORM

Typical Application Circuit (Continued)

Usually, LLC resonant converters require large leakage inductance value. To obtain a large leakage inductance, sectional winding method is used.

- Core: EC35 (Ae=106 mm²)
- Bobbin: EC35 (Horizontal)
- Transformer Model Number: SNX-2468-1

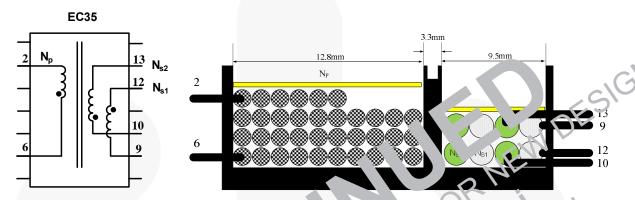
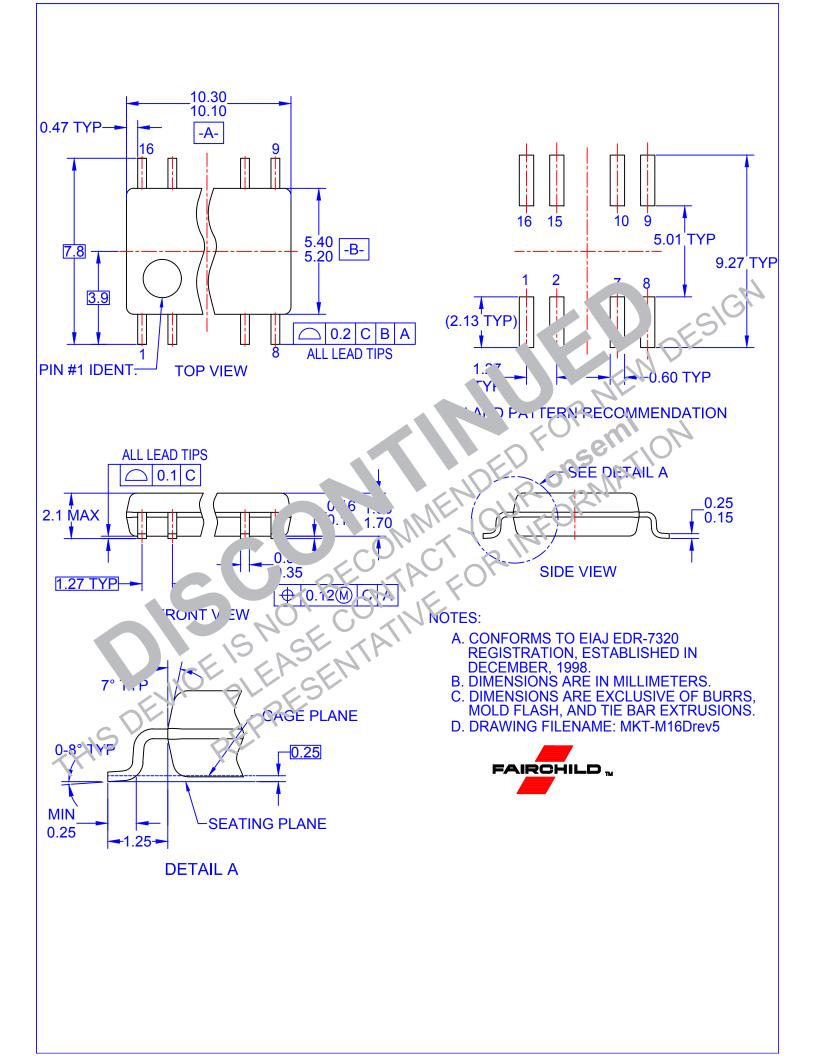



Figure 30. Trar Jorme Con. Sruction

	Pins (S \rightarrow F)	W. Turas	Note
Np	$6 \rightarrow 2$	ୀଃ⊾ ଃଃ (∟ւ∠ Wirạ) ଃର	OK.
N _{s1}	12 → 9	0.(p×234 (Litz Wire) 4	Bifilar Winding
N _{s2}	10 → 1	0.08∞×234 (Litz Wire) 4	Bifilar Winding

Pins	Specifications	Remark
Prin. γ-、'e Inductance (L _p) 2-6	550μH ± 10%	100kHz, 1V
P. hary- de Effective Leakage (Lr) 2-8	110μH ± 10%	Short one of the secondary windings

For more detailed information regarding the transformer, visit <u>http://www.santronics-usa.com/documents.html</u> or contact <u>sales@santronics-usa.com</u> or +1-408-734-1878 (Sunnyvale, California USA).

NOT RECONNENDED FOR MENDESIGN ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC