MOSFET - N-Channel, POWERTRENCH ${ }^{\text {® }}$

150 V, 14 A, 120 m Ω

FDD120AN15AO

Features

- $\mathrm{R}_{\mathrm{DS}(\text { on })}=101 \mathrm{~m} \Omega$ (Typ.) $@ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}$
- $\mathrm{Q}_{\mathrm{G}(\mathrm{tot})}=11.2 \mathrm{nC}($ Typ. $) @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
- Low Miller Charge
- Low Qrr Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- This Device is $\mathrm{Pb}-$ Free, Halide Free and is RoHS Compliant

Applications

- Consumer Appliances
- LED TV
- Synchronous Rectification
- Uninterruptible Power Supply
- Micro Solar Inverter

MOSFET MAXIMUM RATINGS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
$\mathrm{V}_{\mathrm{DSS}}$	Drain to Source Voltage	150	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate to Source Voltage	± 20	V
I_{D}	Drain Current		A
	Continuous $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$	14	
	Continuous $\left(\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$	9.7	
	Continuous $\left(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$	2.8	
	wulsed \quad with $\mathrm{R}_{\theta J \mathrm{AJ}}=52^{\circ} \mathrm{C} / \mathrm{W}$	Figure 4	
E_{AS}	Single Pulse Avalanche Energy (Note 1)	122	mJ
P_{D}	Power Dissipation	65	W
	Derate above $25^{\circ} \mathrm{C}$	0.43	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{STG}}$	Operating and Storage Temperature	-55 to 175	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
$R_{\theta J C}$	Thermal Resistance, Junction to Case, Max.	2.31	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta J A}$	Thermal Resistance, Junction to Ambient, Max.	100	
$\mathrm{R}_{\theta J A}$	Thermal Resistance, Junction to Ambient, 1 in 2 Copper Pad Area, Max.	52	${ }^{\circ} \mathrm{C} / \mathrm{W}$

$\mathbf{V}_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$ MAX	\mathbf{I}_{D} MAX
150 V	$120 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	14 A

DPAK3 (TO-252 3 LD)
CASE 369AS

MARKING DIAGRAM

\&Z $\quad=$ Assembly Plant Code
\&3 $=3$-Digit Date Code
\&K $\quad=2$-Digits Lot Run Traceability Code
FDD120AN15A0 = Device Code

N-Channel

ORDERING INFORMATION
See detailed ordering and shipping information on page 12 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
BvDss	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	150	-	-	V
${ }^{\text {dSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=120 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	250	
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	-	-	± 100	nA

ON CHARACTERISTICS

$\mathrm{V}_{\mathrm{GS} \text { (TH) }}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	-	4	V
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	0.101	0.120	Ω
		$\mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}$	-	0.113	0.170	
		$\mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$	-	0.235	0.282	

DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {ISS }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	770	-	pF
Coss	Output Capacitance		-	85	-	pF
$\mathrm{C}_{\text {RSS }}$	Reverse Transfer Capacitance		-	17	-	pF
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 10 V	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$	-	11.2	14.5	nC
$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	Threshold Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$	-	1.4	1.8	nC
Q_{gs}	Gate to Source Gate Charge	$\mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA}$	-	3.5	-	nC
$Q_{\text {gs2 }}$	Gate Charge Threshold to Plateau		-	2.1	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	2.6	-	nC

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$

ton	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=75 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=24 \Omega \end{aligned}$	-	-	33	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		-	6	-	ns
t_{r}	Rise Time		-	16	-	ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-Off Delay Time		-	30	-	ns
t_{f}	Fall Time		-	19	-	ns
toff	Turn-Off Time		-	-	74	ns

DRAIN-SOURCE DIODE CHARACTERISTICS

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=4 \mathrm{~A}$	-	-	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=2 \mathrm{~A}$	-	-	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{SD}}=4 \mathrm{~A}, \mathrm{~d} \mathrm{I}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	61	ns
Q_{RR}	Reverse Recovered Charge	$\mathrm{I}_{\mathrm{SD}}=4 \mathrm{~A}, \mathrm{~d} \mathrm{I}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	109	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=27 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=3 \mathrm{~A}$.
2. Pulse width $=100 \mathrm{~s}$.

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Figure 1. Normalized Power Dissipation vs. Ambient Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted) (continued)

Figure 6. Unclamped Inductive Switching Capability

Figure 8. Saturation Characteristics

Figure 10. Normalized Drain to Source On Resistance vs. Junction Temperature

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted) (continued)

Figure 11. Normalized Gate Threshold Voltage vs. Junction Temperature

$V_{\text {DS }}$, DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs. Drain to Source Voltage

Figure 12. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

Figure 14. Gate Charge Waveforms for Constant Gate Currents

FDD120AN15A0

TEST CIRCUITS AND WAVEFORMS

Figure 15. Unclamped Energy Test Circuit

Figure 17. Gate Charge Test Circuit

Figure 19. Switching Time Test Circuit

Figure 16. Unclamped Energy Waveforms

Figure 18. Gate Charge Waveforms

Figure 20. Switching Time Waveforms

THERMAL RESISTANCE VS. MOUNTING PAD AREA

The maximum rated junction temperature, T_{JM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$, and thermal resistance $\mathrm{R}_{\theta \mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{R_{\theta J A}} \tag{eq.1}
\end{equation*}
$$

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
onsemi provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $\mathrm{R}_{\theta \mathrm{JA}}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1 oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications
can be evaluated using the onsemi device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3 . Equation 2 is used for copper area defined in inches square and Equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$
\begin{equation*}
R_{\text {日JA }}=33.32+\frac{23.84}{(0.268+\text { Area })} \tag{eq.2}
\end{equation*}
$$

Area in Inches Squared

$$
\begin{equation*}
\mathrm{R}_{\text {өJA }}=33.32+\frac{154}{(1.73+\text { Area })} \tag{eq.3}
\end{equation*}
$$

Area in Centimeters Squared

Figure 21. Thermal Resistance vs. Mounting Pad Area

FDD120AN15A0

PSPICE ELECTRICAL MODEL

.SUBCKT FDD120AN15A0 213 ; rev July 2002
Ca $1282.5 \mathrm{e}-10$
Cb $15142.5 \mathrm{e}-10$
Cin 68 7.5e-10
Dbody 75 DbodyMOD
Dbreak 511 DbreakMOD
Dplcap 105 DplcapMOD

Ebreak 1171718162
Eds 148581
Egs 138681
Esg 610681
Evthres 6211981
Evtemp 20618221
It 8171

Lgate 19 3e-9
Ldrain 25 1.0e-9
Lsource 37 2e-9
RLgate 1930
RLdrain 2510
RLsource 3720
Mmed 16688 MmedMOD
Mstro 16688 MstroMOD
Mweak 162188 MweakMOD
Rbreak 1718 RbreakMOD 1
Rdrain 5016 RdrainMOD 6.55e-2
Rgate 9203.6
RSLC1 551 RSLCMOD 1.0e-6
RSLC2 550 1.0e3
Rsource 87 RsourceMOD 2.8e-2
Rvthres 228 RvthresMOD 1
Rvtemp 1819 RvtempMOD 1
S1a 612138 S1AMOD
S1b 1312138 S1BMOD
S2a 6151413 S2AMOD
S2b 13151413 S2BMOD

Vbat 2219 DC 1
$\operatorname{ESLC} 5150$ VALUE $=\{(\mathrm{V}(5,51) / \operatorname{ABS}(\mathrm{V}(5,51))) *(\operatorname{PWR}(\mathrm{~V}(5,51) /(1 \mathrm{e}-6 * 25), 3))\}$
.MODEL DbodyMOD D (IS=4E-12 N=1.07 RS=6.5e-3 TRS1=3.0e-3 TRS2=1.5e-6
$+\mathrm{CJO}=5.5 \mathrm{e}-10 \mathrm{M}=0.65 \mathrm{TT}=5 \mathrm{e}-8 \mathrm{XTI}=4.2$)
.MODEL DbreakMOD D (RS=0.5 TRS1=1e-3 TRS2=-1e-6)
.MODEL DplcapMOD D (CJO=1.56e-10 IS=1.0e-30 N=10 M=0.62)
.MODEL MmedMOD NMOS (VTO=3.6 KP=1.8 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.6)
.MODEL MstroMOD NMOS (VTO=4.4 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MweakMOD NMOS (VTO=3.14 KP=0.02 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=36 RS=0.1)
.MODEL RbreakMOD RES (TC1=1.1e-3 TC2=-1e-6)
.MODEL RdrainMOD RES (TC1=8.5e-3 TC2=2.5e-5)
.MODEL RSLCMOD RES (TC1=3.4e-3 TC2=1.5e-6)
.MODEL RsourceMOD RES (TC1=4.1e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1 $=-3.6 \mathrm{e}-3 \mathrm{TC} 2=-1.4 \mathrm{e}-5$)
.MODEL RvtempMOD RES (TC1=-4.1e-3 TC2=1.5e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.0 VOFF=-4.0)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.0 VOFF=-6.0)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.5 VOFF=-0.5)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2.5)
.ENDS

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

Figure 22.

FDD120AN15A0

SABER ELECTRICAL MODEL

REV July 2002
template FDD120AN15A0 n2,n1,n3
electrical n2,n1,n3
\{
var i iscl
dp..model dbodymod $=($ isl $=4 \mathrm{e}-12, \mathrm{nl}=1.07, \mathrm{rs}=6.5 \mathrm{e}-3, \operatorname{trs} 1=3.0 \mathrm{e}-3, \operatorname{trs} 2=1.5 \mathrm{e}-6, \mathrm{cjo}=5.5 \mathrm{e}-10, \mathrm{~m}=0.65, \mathrm{tt}=5 \mathrm{e}-8, \mathrm{xti}=4.2)$
dp.. model dbreakmod $=(r s=0.5, \operatorname{trs} 1=1 \mathrm{e}-3, \operatorname{trs} 2=-1 \mathrm{e}-6)$
dp..model dplcapmod $=(\mathrm{cjo}=1.56 \mathrm{e}-10, \mathrm{isl}=10.0 \mathrm{e}-30, \mathrm{nl}=10, \mathrm{~m}=0.62)$
$\mathrm{m} .$. model mmedmod $=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=3.6, \mathrm{kp}=1.8$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
$\mathrm{m} .$. model mstrongmod $=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=4.4, \mathrm{kp}=30$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
$\mathrm{m} .$. model mweakmod $=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=3.14, \mathrm{kp}=0.02, \mathrm{is}=1 \mathrm{e}-30$, tox $\left.=1, \mathrm{rs}=0.1\right)$
sw_vcsp..model s1amod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-6.0$, voff $=-4.0)$
sw_vcsp..model s1bmod $=($ ron=1e-5,roff=0.1,von=-4.0,voff=-6.0)
sw_vcsp..model s2amod $=($ ron=1e-5,roff=0.1,von=-2.5,voff=-0.5)
sw_vcsp..model s2bmod $=($ ron=1e -5, roff $=0.1$, von $=-0.5$, voff $=-2.5)$
c.ca n12 n8 $=2.5 \mathrm{e}-10$
c.cb n15 n $14=2.5 \mathrm{e}-10$
c.cin $\mathrm{n} 6 \mathrm{n} 8=7.5 \mathrm{e}-10$
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17n18 $=162$
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 $=1$
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6n21n19n8 = 1
spe.evtemp n20 n6n18n22 $=1$
i.it $\mathrm{n} 8 \mathrm{n} 17=1$
1.lgate n1 n9 $=3 \mathrm{e}-9$
1.ldrain $\mathrm{n} 2 \mathrm{n} 5=1.0 \mathrm{e}-9$
1.lsource n3 n7 = 2e-9
res.rlgate $\mathrm{n} 1 \mathrm{n} 9=30$
res.rldrain n2 n5 $=10$
res.rlsource $\mathrm{n} 3 \mathrm{n} 7=20$
m.mmed n16n6n8n8 = model=mmedmod, $\mathrm{l}=\mathrm{lu}, \mathrm{w}=1 \mathrm{u}$
m.mstrong n16n6n8n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mweak n16n21n8n8= model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
res.rbreak n17 n18 $=1$, tc $1=1.1 \mathrm{e}-3$,tc $2=-1 \mathrm{e}-6$
res.rdrain n50 n16 $=6.55 \mathrm{e}-2$, tc $1=8.5 \mathrm{e}-3$, tc $2=2.5 \mathrm{e}-5$
res.rgate $\mathrm{n} 9 \mathrm{n} 20=3.6$
res.rslc1 n5 n51 $=1.0 \mathrm{e}-6$, tc $1=3.4 \mathrm{e}-3$, tc $2=1.5 \mathrm{e}-6$
res.rslc $2 \mathrm{n} 5 \mathrm{n} 50=1.0 \mathrm{e} 3$
res.rsource $\mathrm{n} 8 \mathrm{n} 7=2.8 \mathrm{e}-2$, tc $1=4.1 \mathrm{e}-3$, tc $2=1 \mathrm{e}-6$
res.rvthres $\mathrm{n} 22 \mathrm{n} 8=1$, tc1 $=-3.6 \mathrm{e}-3$,tc2 $=-1.4 \mathrm{e}-5$
res.rvtemp n18 n19 $=1$, tc $1=-4.1 \mathrm{e}-3$, tc $2=1.5 \mathrm{e}-6$
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 $=$ model=s2amod

FDD120AN15A0

sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations \{
i (n51->n50) +=iscl
iscl: $\mathrm{v}(\mathrm{n} 51, \mathrm{n} 50)=\left((\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51) /(1 \mathrm{e}-9+\operatorname{abs}(\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51))))^{*}\left((\operatorname{abs}(\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51) * 1 \mathrm{e} 6 / 25))^{* *} 3\right)\right)$
\}

Figure 23.

PSPICE ELECTRICAL MODEL

REV 23 July 2002

FDD120AN15A0T

CTHERM1 TH 6 1.2e-3
CTHERM2 $652 \mathrm{e}-3$
CTHERM3 $542.5 \mathrm{e}-3$
CTHERM4 43 3.15e-3
CTHERM5 32 3.3e-3
CTHERM6 2 TL $1.35 \mathrm{e}-2$

RTHERM1 TH 6 6.8e-2
RTHERM2 65 1.18e-1
RTHERM3 $542.28 \mathrm{e}-1$
RTHERM4 43 3.28e-1
RTHERM5 32 5.28e-1
RTHERM6 2 TL 5.78e-1

SABER ELECTRICAL MODEL

SABER thermal model FDD120AN15A0T
template thermal_model th tl
thermal_c th, tl
\{
ctherm.ctherm1 th $6=1.2 \mathrm{e}-3$
ctherm.ctherm2 $65=2 \mathrm{e}-3$
ctherm.ctherm3 $54=2.5 \mathrm{e}-3$
ctherm.ctherm4 $43=3.15 \mathrm{e}-3$
ctherm.ctherm5 $32=3.3 \mathrm{e}-3$
ctherm.ctherm6 $2 \mathrm{tl}=1.35 \mathrm{e}-2$
rtherm.rtherm1 th $6=6.8 \mathrm{e}-2$
rtherm.rtherm2 $65=1.18 \mathrm{e}-1$
rtherm.rtherm3 $54=2.28 \mathrm{e}-1$
rtherm.rtherm4 $43=3.28 \mathrm{e}-1$
rtherm.rtherm5 $32=5.28 \mathrm{e}-1$
rtherm.rtherm6 $2 \mathrm{tl}=5.78 \mathrm{e}-1$ \}

Figure 24.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Shipping †
FDD120AN15A0	FDD120AN15A0	DPAK3 (TO-252 3 LD) (Pb-Free, Halide Free)	330 mm	16 mm	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

XXXX = Specific Device Code A = Assembly Location Y = Year
WW = Work Week
ZZ = Assembly Lot Code

DOCUMENT NUMBER:	98AON13810G	Electronic Versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTRO

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

