MOSFET- N-Channel, Logic Level, POWERTRENCH ${ }^{\circledR}$

FDG315N

General Description

This N -Channel Logic Level MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- $2 \mathrm{~A}, 30 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.12 \Omega @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
- $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.16 \Omega @ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$
- Low Gate Charge (2.1 nC Typical)
- High Performance Trench Technology for Extremely Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$
- Compact Industry Standard SC70-6 Surface Mount Package
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Applications

- DC/DC Converter
- Load Switch
- Power Management

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter		Ratings	Units
$\mathrm{V}_{\mathrm{DSS}}$	Drain-Source Voltage	30	V	
$\mathrm{~V}_{\mathrm{GSS}}$	Gate-Source Voltage	± 20	V	
I_{D}	Drain Current	Continuous (Note 1a)	2	A
		Pulsed	6	
P_{D}	Power Dissipation for Single Operation	(Note 1a)	0.75	W
	(Note 1b)	0.48		
$\mathrm{~T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SC-88/SC70-6/SOT-363
CASE 419B-02

MARKING DIAGRAM

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient (Note 1b)	260	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.
a) $170^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper.
b) $260^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Reel Size	Tape Width	Shipping †
15	FDG315N	$7 \prime$	8 mm	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
$\mathrm{BV}_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	30	-	-	V
$\Delta \mathrm{BV}_{\text {DSS }} / \Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	-	26	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
IGSS	Gate-Body Leakage Forward	$\mathrm{V}_{\mathrm{GS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	100	nA
IGss	Gate-Body Leakage Reverse	$\mathrm{V}_{\mathrm{GS}}=-16 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	-100	nA

ON CHARACTERISTICS (Note 2)

$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1	1.8	3	V
$\Delta \mathrm{V}_{\mathrm{GS} \text { (th) }} / \Delta \mathrm{T}_{\mathrm{J}}$	Gate Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	-	-4	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-Source On-Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A} \end{aligned}$	-	$\begin{aligned} & 0.100 \\ & 0.140 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.20 \\ & 0.16 \end{aligned}$	Ω
$\mathrm{I}_{\mathrm{D} \text { (on) }}$	On-State Drain Current	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}$	3	-	-	A
$\mathrm{G}_{\text {FS }}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$	-	5	-	S

DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	-	220	-	pF
$\mathrm{Cosss}^{\text {d }}$	Output Capacitance		-	50	-	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		-	20	-	pF

SWITCHING CHARACTERISTICS (Note 2)

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay Time	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{array} \end{aligned}$	-	3	6	ns
t_{r}	Turn-On Rise Time		-	11	22	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time		-	7	14	ns
t_{f}	Turn-Off Fall Time		-	3	6	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \end{aligned}$	-	2.1	4	nC
Q_{gs}	Gate-Source Charge		-	0.8	-	nC
Q_{gd}	Gate-Drain Charge		-	0.7	-	nC

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

I_{S}	Maximum Continuous Drain-Source Diode Forward Current	-	-	0.42	A	
$\mathrm{~V}_{\mathrm{SD}}$	Drain-Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.42 \mathrm{~A}($ Note 2)	-	0.7	1.2	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Pulse Test: Pulse Width < $300 \mu \mathrm{~s}$, Duty Cycle $<2.0 \%$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation with Temperature

Figure 5. Transfer Characteristics

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

Figure 4. On-Resistance Variation with Gate-to-Source Voltage

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Figure 7. Gate Charge Characteristics

Figure 9. Maximum Safe Operating Area

Figure 8. Capacitance Characteristics

Figure 10. Single Pulse Maximum Power Dissipation

Thermal characterization performed using the conditions described in Note 1b.
Transient thermal response will change depending on the circuit board design.
Figure 11. Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02
ISSUE Z

DATE 18 APR 2024

TOP VIEW

NOTES:

1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018
. ALL DIMENSION ARE IN MILLIMETERS
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

RECOMMENDED MOUNTING FOOTPRINT*
FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	---	---	1.10
A1	0.00	---	0.10
A2	0.70	0.90	1.00
b	0.15	0.20	0.25
c	0.08	0.15	0.22
D	2.00 BSC		
E	2.10 BSC		
E1	1.25 BSC		
e	0.65 BSC		
L	0.26	0.36	0.46
L2	0.15 BSC		
aaa	0.15		
bbb	0.30		
ccc	0.10		
ddd	0.10		

XXX = Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88 2.00×1.25x0.90, 0.65P | PAGE 1 OF 2 |

[^0]STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:
CANCELLED

STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28 :	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88 2.00x1.25x0.90, 0.65P | PAGE 2 OF 2 |

[^1]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^1]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

