

MOSFET - N-Channel, Shielded Gate POWERTRENCH®

40 V, 141 A, 2.1 m Ω

FDMC8360LET40

General Description

This N-Channel MOSFET is produced using **onsemi's** advanced POWERTRENCH process that incorporates shielded gate technology. This process has been optimized for the on-state resistance and yet maintain superior switching performance.

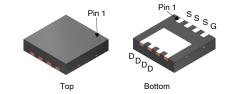
Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(on)} = 2.1 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 27 \text{ A}$
- Max $R_{DS(on)} = 3.1 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 22 \text{ A}$
- High Performance Technology for Extremely Low R_{DS(on)}
- Termination is Lead-Free
- 100% UIL Tested
- This Device is Pb-Free, Halide Free and is RoHS Compliant

Application

• DC-DC Conversion

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

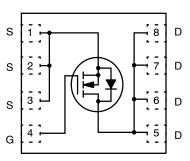

Symbol	Parameter	Ratings	Units
VDS	Drain to Source Voltage	40	V
Vgs	Gate to Source Voltage	±20	V
I _D	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	141 100 27 658	Α
Eas	Single Pulse Avalanche Energy (Note 3)	253	mJ
P _D	Power Dissipation T _C = 25°C	75	W
	Power Dissipation $T_A = 25^{\circ}C$ (Note 1a)	2.8	
Тл, Тѕтс	Operating and Storage Junction Temperature Range	-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Rелс	Thermal Resistance, Junction-to-Case (Note 1)	2.0	°C/W
Rеja	Thermal Resistance, Junction-to-Ambient (Note 1a)	53	°C/W

V _{DS}	R _{DS(ON)} MAX	I _D MAX
40 V	2.1 mΩ @ 10 V	141 A
	3.1 mΩ @ 4.5 V	


WDFN8 3.3x3.3, 0.65P CASE 483AW

MARKING DIAGRAM

FDMC 8360LET ALYW

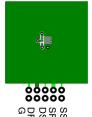
FDMC8360LET = Specific Device Code
A = Assembly Site
L = Wafer Lot Number
YW = Assembly Start Week

PIN ASSIGNMENT

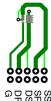
N-Channel MOSFET

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC8360LET40	WDFN8 (Pb–Free, Halide Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T, = 25°C unless otherwise noted)


Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS					
ΔBV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40	-	-	V
ΔBV_{DSS} / ΔT_{J}	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25°C	-	20	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 32 V, V _{GS} = 0 V	_	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA
ON CHARACTE	RISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.7	3.0	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	-6	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 27 A	-	1.4	2.1	mΩ
		V _{GS} = 4.5 V, I _D = 22 A	_	2.1	3.1	
		V _{GS} = 10 V, I _D = 27 A, T _J = 150°C	_	2.3	3.5	
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 27 A	_	138	-	S
DYNAMIC CHAI	RACTERISTICS			_		
C _{iss}	Input Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz	_	3785	5300	pF
C _{oss}	Output Capacitance		_	1220	1710	pF
C _{rss}	Reverse Transfer Capacitance		_	57	80	pF
R_g	Gate Resistance		0.1	0.8	1.6	Ω
SWITCHING CH	ARACTERISTICS			- -	-	-
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 20 \text{ V}, I_D = 27 \text{ A},$	-	14	26	ns
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	_	8	16	ns
t _{d(off)}	Turn-Off Delay Time		_	35	57	ns
t _f	Fall Time		-	7	14	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V V _{DD} = 20 V	-	57	80	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $I_D = 27 \text{ A}$	-	27	38	nC
Qgs	Gate to Source Charge	<u> </u>	_	9.9	-	nC
Qgd	Gate to Drain "Miller" Charge		-	8.1	-	nC
DRAIN-SOURC	E DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 27 A (Note 2)	-	0.8	1.3	V
		V _{GS} = 0 V, I _S = 1.9 A (Note 2)	-	0.7	1.2	
t _{rr}	Reverse Recovery Time	I _F = 27 A, di/dt = 100 A/μs	-	47	76	ns
Q _{rr}	Reverse Recovery Charge		_	30	48	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. R_{0,JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 53°C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0 %.
 3. E_{AS} of 253 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 13 A, V_{DD} = 40 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 42 A.
 4. Pulsed Id please refer to Figure 11 SOA graph for more details
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

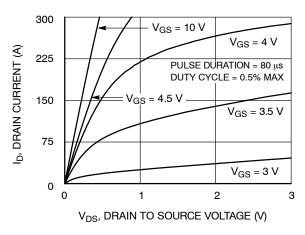


Figure 1. On Region Characteristics

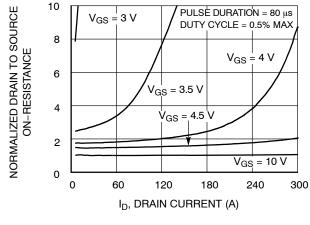


Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

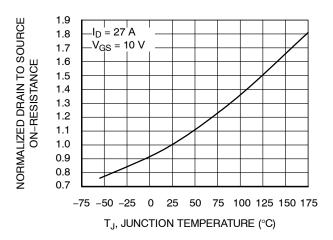


Figure 3. Normalized On Resistance vs. Junction Temperature

Figure 4. On-Resistance vs. Gate to Source Voltage

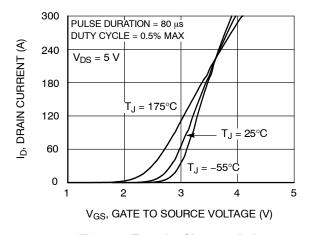


Figure 5. Transfer Characteristics

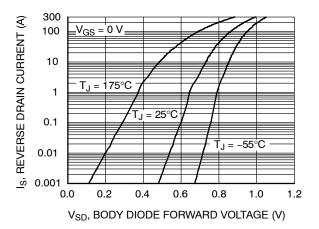


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

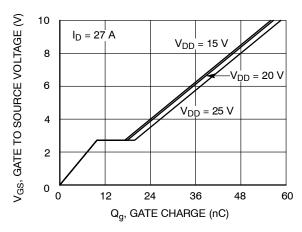


Figure 7. Gate Charge Characteristics

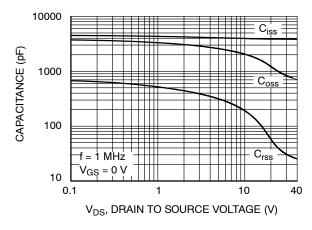


Figure 8. Capacitance vs. Drain to Source Voltage

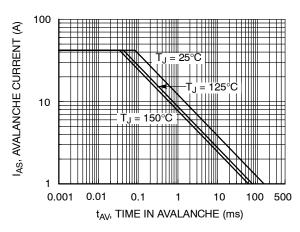


Figure 9. Unclamped Inductive Switching Capability

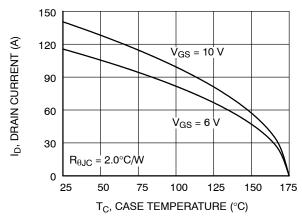


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

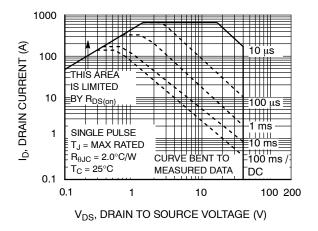


Figure 11. Forward Bias Safe Operating Area

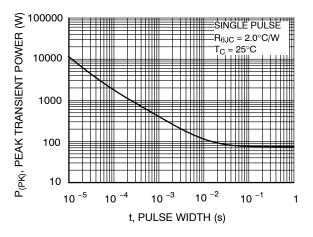


Figure 12. Single Pulse Maximum Power Dissipation

$\textbf{TYPICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted}) \ (continued)$

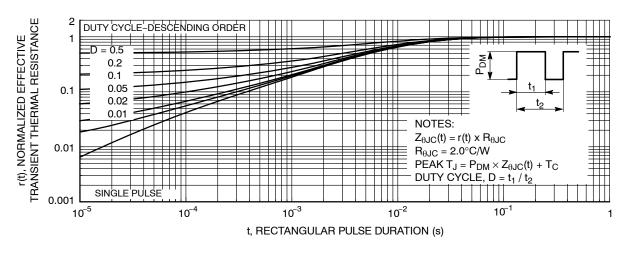


Figure 13. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

TERMINAL #1

INDEX AREA

(D/2 X E/2)

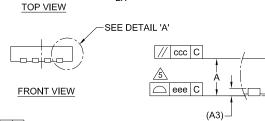
⊃ aaa C

WDFN8 3.30x3.30x0.75, 0.65P CASE 483AW ISSUE B

DATE 22 MAR 2024

NOTES:

С

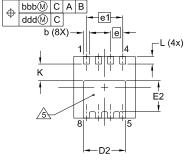

SEATING

PLANE

<u></u>

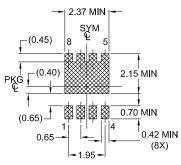
DETAIL A

- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JEP95 SEC. 3 SPP-12. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD, EMBEDDED METAL OR MARKED FEATURE.
- ©COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. 'A1' IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.


2X

aaa C

Α


5

В

BOTTOM VIEW

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

MILLIMETERS DIM MIN NOM MAX 0.70 0.75 Α 0.80 Α1 0.05 А3 0.20 REF b 0.27 0.32 0.37 D 3.30 BSC D2 2.17 2.27 2.37 Ε 3.30 BSC E2 1.56 1.66 1.76 е 0.65 BSC 1.95 BSC e1 Κ 0.90 L 0.30 0.40 0.50 0.10 aaa bbb 0.10 0.10 CCC ddd 0.05 0.05 eee

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code A = Assembly Location

Y = Year

WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13672G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.30x3.30x0.75, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales