Onsemi

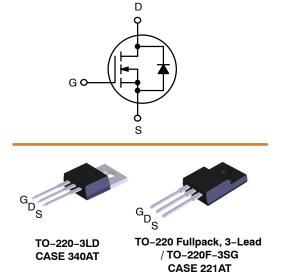
MOSFET – N-Channel, UniFET[™], FRFET[®]

V _{DS}	R _{DS(ON)} MAX	I _D MAX
500 V	260 m Ω @ 10 V	20 A

500 V, 20 A, 260 mΩ

FDP20N50F / FDPF20N50FT

Description


UniFET MOSFET is onsemi's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. The body diode's reverse recovery performance of UniFET FRFET MOSFET has been enhanced by lifetime control. Its t_{rr} is less than 100 ns and the reverse dv/dt immunity is 15 V/ns while normal planar MOSFET's have over 200 ns and 4.5 V/ns respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features

- $R_{DS(on)} = 210 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$
- Low Gate Charge (Typ. 50 nC)
- Low C_{rss} (Typ. 27 pF)
- 100% Avalanche Tested
- Improve dv/dt Capability
- These Devices are Pb-Free and are RoHS Compliant

Applications

- LCD/LED TV
- Lighting
- Uninterruptible Power Supply
- AC–DC Power Supply

MARKING DIAGRAM

FDP 20N50F AYWWZZ		FDPF20 N50FT AYWWZZ
20N50F, F20N50FT /	= Assembl	Device Code ly Location de (Year & Week) ly Lot

ORDERING INFORMATION

Device	e Package Shippin	
FDP20N50F	TO-220	1000 Units / Tube
FDPF20N50FT	TO-220F	1000 Units / Tube

Symbol	Para	meter	FDP20N50F	FDPF20N50FT	Unit
V _{DSS}	Drain to Source Voltage		5	500	
V _{GSS}	Gate to Source Voltage		±	±30	
I _D	Drain Current –	– Continuous (T _C = 25°C) – Continuous (T _C = 100°C)	20 12.9	20* 12.9*	А
I _{DM}	Drain Current	– Pulsed (Note 1)	80	80*	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		11	1110	
I _{AR}	Avalanche Current (Note 1)		20		А
E _{AR}	Repetitive Avalanche Energy (Note 1)		25		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		2	0	V/ns
P _D	Power Dissipation	(T _C = 25°C) – Derate Above 25°C	250 2.0	38.5 0.3	W W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		–55 to	o +150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Second 300		00	°C	

MOSFET MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. *Drain current limited by maximum junction temperature 1. Repetitive Rating: Pulse width limited by maximum junction temperature. 2. L = 5 mH, I_{AS} = 20 A, V_{DD} = 50 V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} ≤ 20 A, di/dt ≤ 200 A/µs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C

THERMAL CHARACTERISTICS

 Q_{gs}

Q_{gd}

Symbol	Parameter	FDP20N50F	FDPF20N50FT	Unit
Rejc	Thermal Resistance, Junction-to-Case, Max.	0.5	3.3	°C/W
Recs	Thermal Resistance, Case-to-sink, Typ.	0.5	-	°C/W
Reja	Thermal Resistance, Junction-to-Ambient, Max.	62.5	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Gate to Source Gate Charge

Gate to Drain "Miller" Charge

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OFF CHARAC	TERISTICS					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BV _{DSS}	Drain-Source Breakdown Voltage	I_D = 250 μ A, V_{GS} = 0 V, T_J = 25°C	500	-	-	V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$		$I_D = 250 \ \mu\text{A}$, Referenced to 25°C	-	0.7	_	V/°C
IGSSGate-Body Leakage Current $V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$ ± 1 ON CHARACTERISTICS $V_{GS}(th)$ Gate Threshold Voltage $V_{GS} = V_{DS}, I_D = 250 \mu A$ 3.0 - 5 $R_{DS}(on)$ Static Drain-Source On Resistance $V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$ - 0.22 $0.$ g_{FS} Forward Transconductance $V_{DS} = 20 \text{ V}, I_D = 10 \text{ A}$ - 25 $-$ DYNAMIC CHARACTERISTICS C_{iss} Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ - $2550 33$ C_{oss} Output Capacitance $ 350 44$ C_{rss} Reverse Transfer Capacitance- $27 44$	I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	10	μA
Note that the second problem is the s			V_{DS} = 400 V, T_{C} = 125°C	-	-	100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 30$ V, $V_{DS} = 0$ V	_	-	±100	nA
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ON CHARACT	ERISTICS					
g_{FS} Forward Transconductance $V_{DS} = 20 \text{ V}, I_D = 10 \text{ A}$ -25DYNAMIC CHARACTERISTICS C_{iss} Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ -255033 C_{oss} Output Capacitance $-$ 35044 C_{rss} Reverse Transfer Capacitance-2744	V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	3.0	-	5.0	V
DYNAMIC CHARACTERISTICS C_{iss} Input Capacitance C_{oss} Output Capacitance C_{rss} Reverse Transfer Capacitance	R _{DS(on)}	Static Drain-Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	-	0.22	0.26	Ω
$ \begin{array}{c c} C_{iss} & \text{Input Capacitance} \\ \hline C_{oss} & \text{Output Capacitance} \\ \hline C_{rss} & \text{Reverse Transfer Capacitance} \end{array} \begin{array}{c c} V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz} \\ \hline - & 350 & 44 \\ \hline - & 27 & 4 \\ \hline \end{array} $	9 FS	Forward Transconductance	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 10 \text{ A}$	-	25	-	S
CossOutput Capacitance-35044CrssReverse Transfer Capacitance-274	DYNAMIC CHA	ARACTERISTICS					
C _{rss} Reverse Transfer Capacitance – 27 4	C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz	_	2550	3390	pF
	C _{oss}	Output Capacitance		-	350	465	pF
$Q_{g(tot)}$ Total Gate Charge at 10 V $V_{DS} = 400 \text{ V}, I_D = 20 \text{ A}, - 50 \text{ G}$	C _{rss}	Reverse Transfer Capacitance		_	27	40	pF
	Q _{g(tot)}	Total Gate Charge at 10 V	V _{DS} = 400 V, I _D = 20 A,	-	50	65	nC

V_{GS} = 10 V (Note 4)

_

_

14

20

_

_

nC

nC

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SWITCHING C	HARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 20 \text{ A},$	-	45	100	ns
t _r	Turn-On Rise Time	R _G = 25 Ω (Note 4)	-	120	250	ns
t _{d(off)}	Turn-Off Delay Time	·	-	100	210	ns
t _f	Turn-Off Fall Time		-	60	130	ns
DRAIN-SOUR	CE DIODE CHARACTERISTICS					
I _S	Maximum Continuous Drain to Source Dio	de Forward Current	-	-	20	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	80	А
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 20 \text{ A}$	-	-	1.5	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 20 A dI _F /dt = 100 A/μs	-	154	_	ns
Q _{rr}	Reverse Recovery Charge		-	0.5	_	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially Independent of Operating Temperature Typical Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS

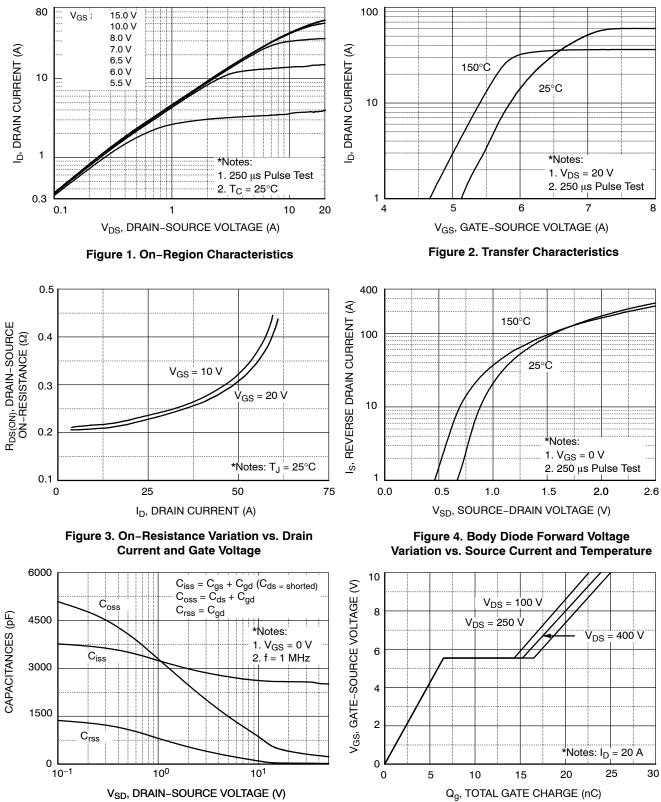
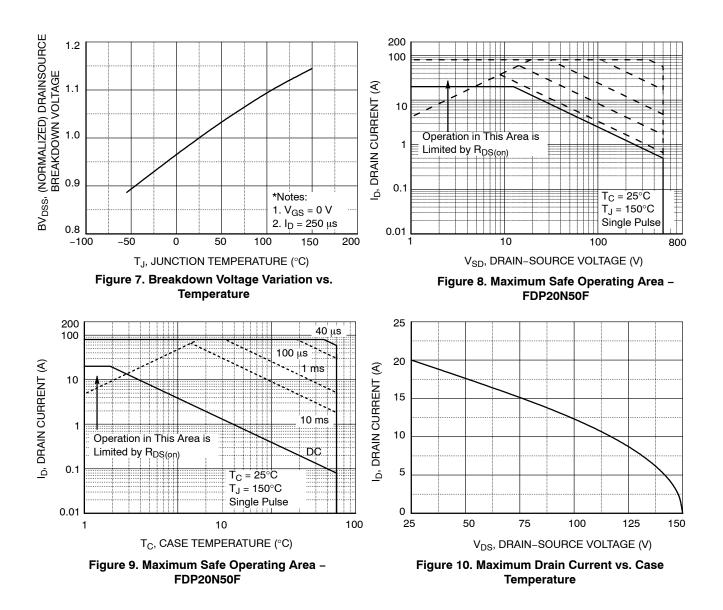



Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS (continued)

Typical Performance Characteristics (continued)

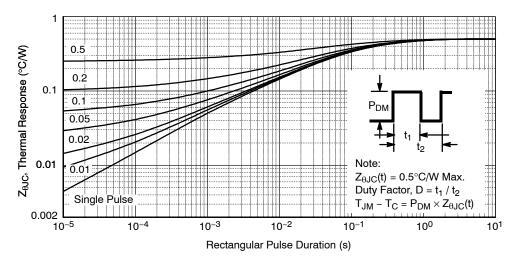


Figure 11. Transient Thermal Response Curve for FDP20N50F

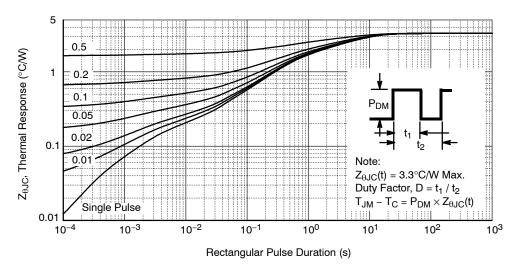
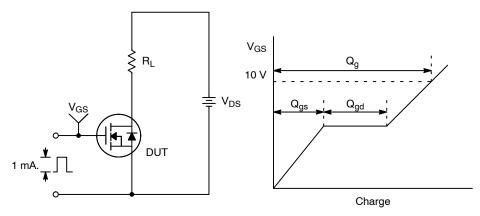



Figure 12. Transient Thermal Response Curve for FDPF20N50FT

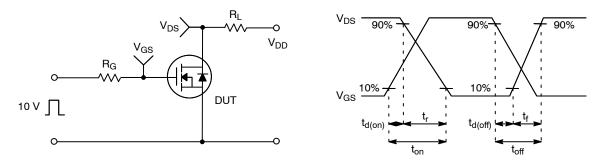
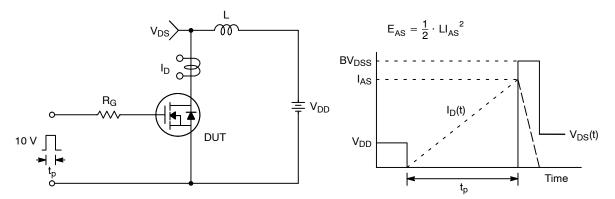



Figure 14. Resistive Switching Test Circuit & Waveforms

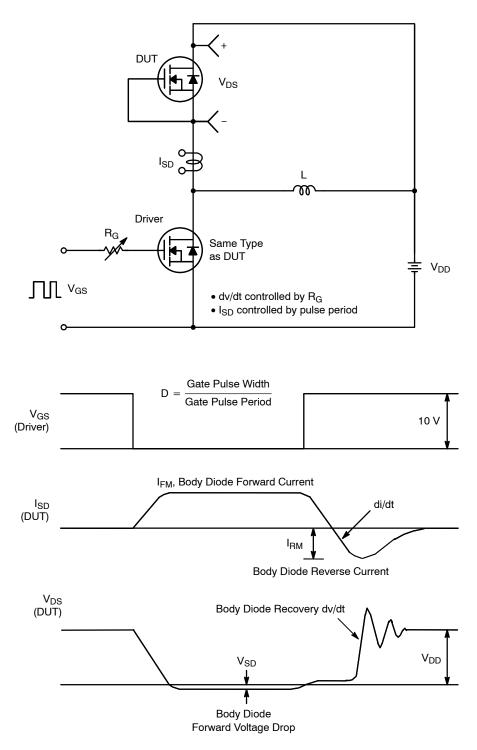
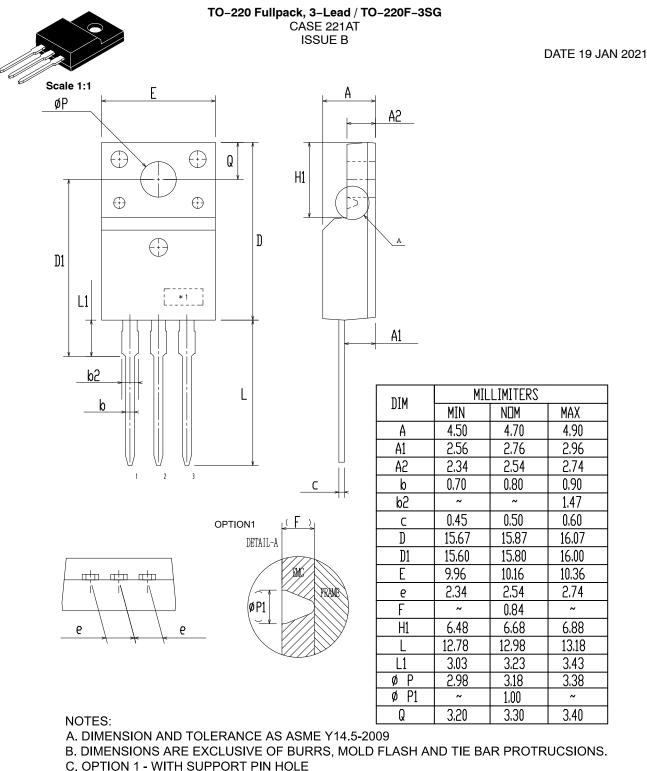
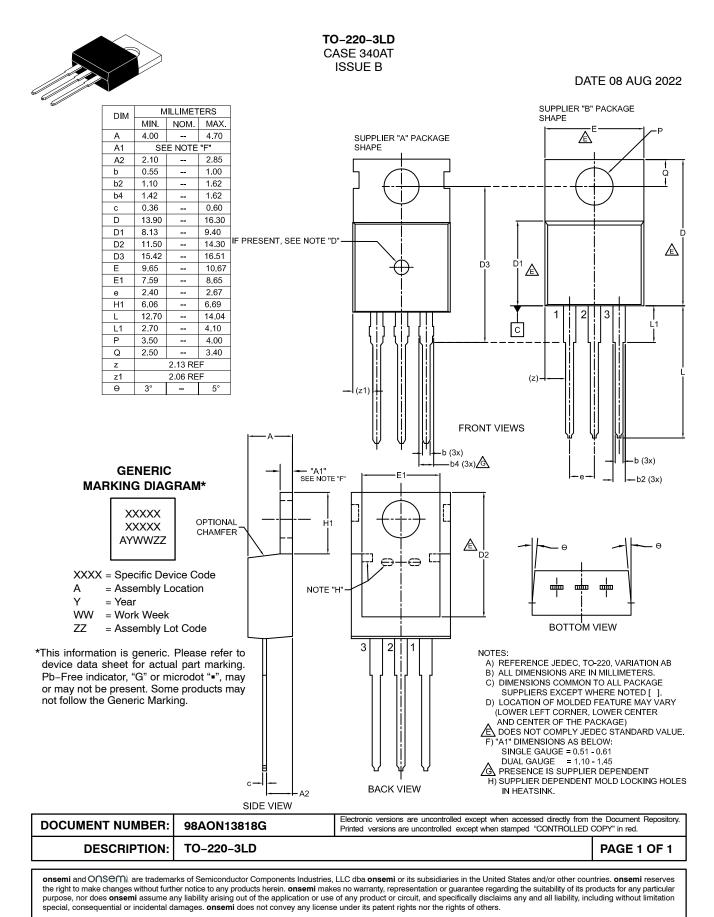



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

UniFET is a trademark of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. FRFET is a registered trademark of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or

FRFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi



OPTION 2 - NO SUPPORT PIN HOLE

DOCUMENT NUMBER:	98AON67439E Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220 FULLPACK, 3-LEAD / TO-220F-3SG		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>