

MOSFET – P-Channel 30 V POWERTRENCH®

FDT458P

Description

This P-Channel MOSFET has been Designed Specifically to Improve the Overall Efficiency of DC/DC Converters using either Synchronous or Conventional Switching PWM Controllers, and battery chargers.

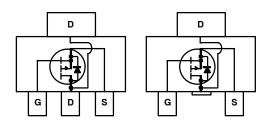
These MOSFETs Feature Faster Switching and lower gate charge than other MOSFETs with comparable $R_{\rm DS(ON)}$ specifications.

Features

- 3.4 A. -30 V.
 - $R_{DS(on)} = 130 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$
 - $R_{DS(on)} = 200 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$
- Fast switching speed
- Low gate charge (2.5 nC typical)
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability in a Widely Used Surface Mount Package
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Battery Chargers
- Motor Drives


MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Unit
V _{DSS}	Drain-Source Voltage	-30	V
V _{GSS}	Gate-Source Voltage	±20	V
I _D	Drain Current -Continuous (Note 1a)	3.4	Α
	-Pulsed	10	
P _D	Maximum Power Dissipation (Note 1a)	3.0	W
	(Note 1b)	1.3	
	(Note 1c)	1.1	
T _J , T _{STG}	Operating and Storage Junction Temperature Range.	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

D D D G S S S S S S G S G S S G S

CASE 318H

MARKING DIAGRAM

FDT4584P = Specific Device Code
A = Assembly Location
Y = Year

Y = Year WW = Work Week ■ = Pb Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
FDT458P	SOT-223 (Pb-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

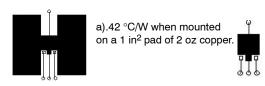
Symbol	Parameter	Value	Unit
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	42	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	12	

FDT458P

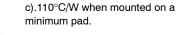
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Characteristic	cs			•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_D = -250 \mu\text{A}$	-30	_	-	V
$\frac{\Delta BV_{DSS(th)}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, Referenced to 25°C	-	-23	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24 V, V _{GS} = 0 V	_	-	1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 25 V, V _{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V _{GS} = -25 V, V _{DS} = 0 V	-	-	-100	nA
On Characteristic	cs (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu\text{A}$	-1	-1.8	-3	V
$\frac{\Delta V_{\rm GS(th)}}{\Delta T_{\rm J}}$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C	-	4	-	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_D = -3.4 \text{ A}$	-	105	130	mΩ
		$V_{GS} = -4.5 \text{ V}, I_D = -2.7 \text{ A}$	-	157	200	1
		$V_{GS} = -10 \text{ V}, I_D = -3.4 \text{ A}, T_J = 125^{\circ}\text{C}$	-	147	210	
I _{D(on)}	On-State Drain Current	V _{GS} = -10 V, V _{DS} = -5 V	-5	_	-	Α
9FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -3.4 \text{ A}$	-	3	-	S
Dynamic Charact	teristics					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	-	205	-	pF
C _{oss}	Output Capacitance		-	55	-	pF
C _{rss}	Reverse Transfer Capacitance		-	26	-	pF
Switching Charac	cteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V, } I_D = -1 \text{ A,}$ $V_{GS} = -10 \text{ V, } R_{GEN} = 6 \Omega$	-	4.5	9	ns
t _r	Turn-On Rise Time		-	12.5	23	ns
t _{d(off)}	Turn-Off Delay Time		-	11	20	ns
t _f	Turn-Off Fall Time		-	2	4	ns
Qg	Total Gate Charge	$V_{DS} = -15 \text{ V}, I_{D} = -3.4 \text{ A},$	-	2.5	3.5	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -10 \text{ V}$	-	0.7	-	nC
Q _{gd}	Gate-Drain Charge	7	_	1	-	nC

FDT458P


ELECTRICAL CHARACTERISTICS (continued) ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter Test Conditions		Min	Тур	Max	Unit
Drain-Source Dio	Drain-Source Diode Characteristics and Maximum Ratings					
I _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	-2.5	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2.5 \text{ A (Note 2)}$	1	-0.8	-1.2	V


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

b).95°C/W when mounted on a.0066 $\rm in^2$ pad of 2 oz copper.

2. Pulse Test : Pulse Width < 300 μ s, Duty Cycle < 2.0%

TYPICAL CHARACTERISTICS $T_J = 25$ °C UNLESS OTHERWISE NOTED

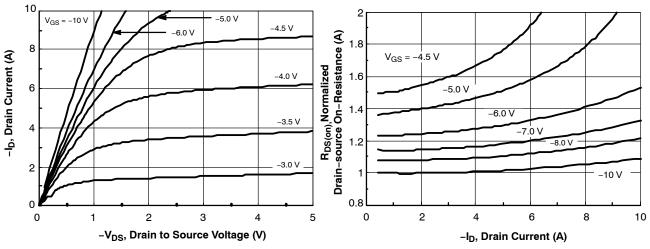


Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation With Drain Current and Gate Voltage

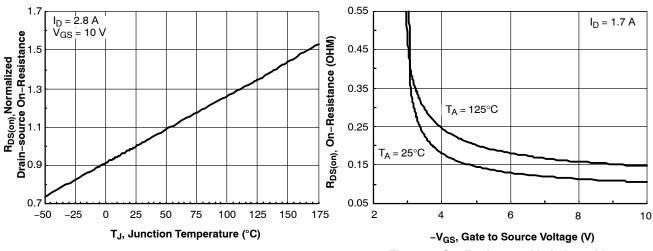


Figure 3. On–Resistance Variation With Temperature

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

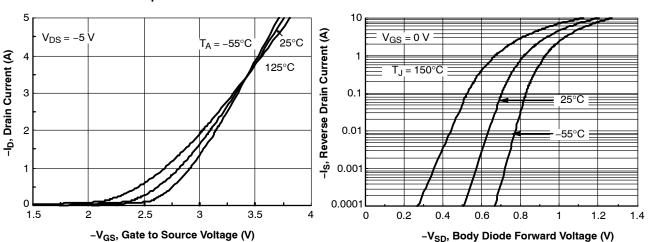
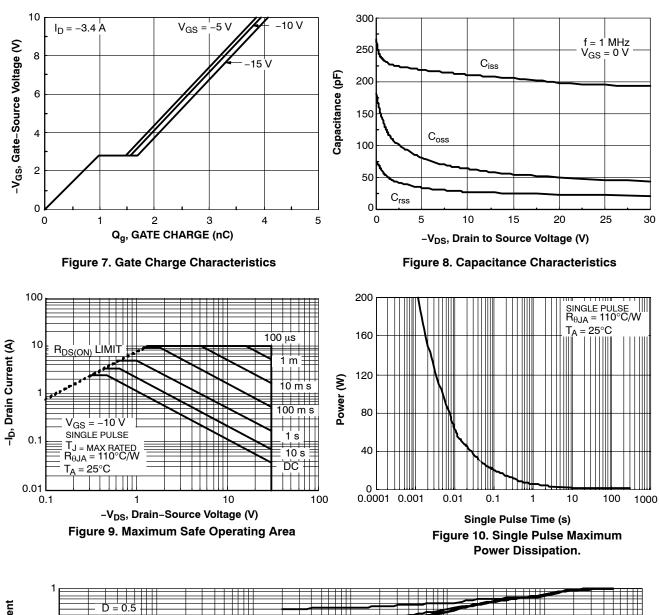



Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation With Source Current and Temperature

TYPICAL CHARACTERISTICS (CONTINUED) $T_J = 25^{\circ}C$ UNLESS OTHERWISE NOTED

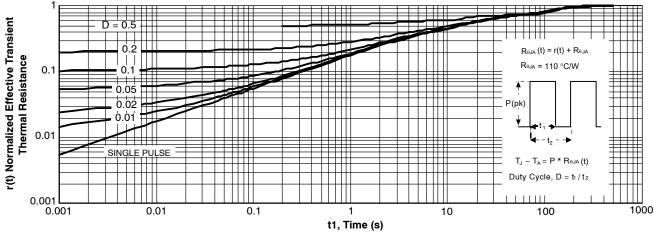
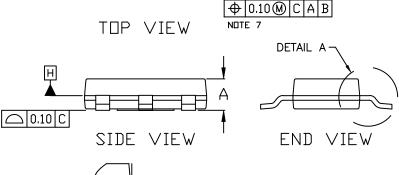


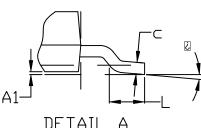
Figure 11. Transient Thermal Response Curve.

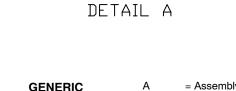
SCALE 2:1

A

В


DATE 13 MAY 2020


NOTES


- DIMENSIONING AND TOLERANCING PER ASME
- DIMENSIDNING AND TOLERANCING PER ASME
 Y14.5M, 2009.
 CONTROLLING DIMENSION: MILLIMETERS
 DIMENSIONS D & E1 ARE DETERMINED AT DATUM
 H. DIMENSIONS DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS DR GATE BURRS. SHALL NOT
 EXCEED 0.23mm PER SIDE.
 LEAD DIMENSIONS & AND &1 DO NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE DAMBBAR
 PROTRUSION IS 0.08mm PER SIDE.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 A1 IS DEFINED AS THE VERTICAL DISTANCE
 FROM THE SEATING PLANE TO THE LOWEST
 POINT OF THE PACKAGE BODY.
 POSITIONAL TOLERANCE APPLIES TO DIMENSIONS
 & AND &1.

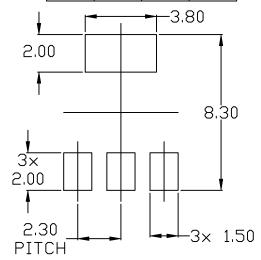
- b AND b1.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α			1.80	
A1	0.02	0.06	0.11	
b	0.60	0.74	0.88	
b1	2.90	3.00	3.10	
c	0.24		0.35	
D	6.30	6.50	6.70	
E	6.70	7.00	7.30	
E1	3.30	3.50	3.70	
е	2.30 BSC			
L	0.25			
į.	0°		10°	

MARKING DIAGRAM*

AYW

XXXXX.


= Assembly Location = Year

= Work Week W

XXXXX = Specific Device Code = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the IIN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASH70634A	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales