Onsemi

IGBT – Power, Co-PAK **N-Channel, Field Stop VII** (FS7), TO247-4L 1200 V, 1.7 V, 160 A FGY4L160T120SWD

Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 4-lead package, FGY4L160T120SWD offers the optimum performance with low switching and conduction losses for high-efficiency operations in various applications like Solar Inverter, UPS and ESS.

Features

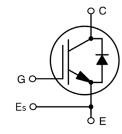
- Maximum Junction Temperature $T_J = 175^{\circ}C$
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- Smooth and Optimized Switching
- Low Switching Loss
- RoHS Compliant

Applications

- Solar Inverter
- UPS
- Energy Storage System

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

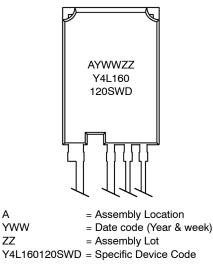
Param	Parameter			
Collector-to-Emitter Volt	V _{CE}	1200	V	
Gate-to-Emitter Voltage		V _{GE}	±20	
Transient Gate-to-Emitte	er Voltage		±30	
Collector Current	Collector Current $T_{C} = 25^{\circ}C$ (Note 1)			
	$T_{\rm C} = 100^{\circ}{\rm C}$	1	160	
Power Dissipation	$T_{\rm C} = 25^{\circ}{\rm C}$	PD	1500	W
	$T_{C} = 100^{\circ}C$	1	750	
Pulsed Collector Current	0,		640	А
Diode Forward	T _C = 25°C (Note 1)	۱ _F	200	
Current	$T_{C} = 100^{\circ}C$	1	160	
Pulsed Diode Forward Current	I _{FM}	640		
Operating Junction and S Range	T _J , T _{stg}	– 55 to +175	°C	
Lead Temperature for So	Idering Purposes	TL	265	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Value limited by bond wire

2. Repetitive rating: Pulse width limited by max. junction temperature.

BV _{CES}	V _{CE(SAT)_TYP}	I _C
1200 V	1.7 V	160 A


PIN CONNECTIONS

TO-247-4LD CASE 340BW

MARKING DIAGRAM

Α

ORDERING INFORMATION

Device	Device Package	
FGY4L160T120SWD	TO-247-4LD (Pb-Free)	30 Units / Tube

THERMAL CHARACTERISTICS

		Value			
Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Case for IGBT	$R_{\theta JC}$	-	80.0	0.10	°C/W
Thermal Resistance, Junction-to-Case for Diode	$R_{\theta JCD}$	-	0.12	0.16	
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	-	-	40	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
Collector-to-Emitter Breakdown Voltage	BV _{CES}	V _{GE} = 0 V, I _C = 1 mA	1200	_	-	V	
Breakdown Voltage Temperature Coefficient	$\frac{\Delta \text{BV}_{\text{CES}}}{\Delta \text{T}_{\text{J}}}$	V _{GE} = 0 V, I _C = 9.99 mA	-	1180	-	mV/°C	
Collector-to-Emitter Cut-Off Current	I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	-	-	40	μΑ	
Gate-to-Emitter Leakage Current	I _{GES}	V_{GE} = ±20 V, V_{CE} = 0 V	-	-	±400	nA	

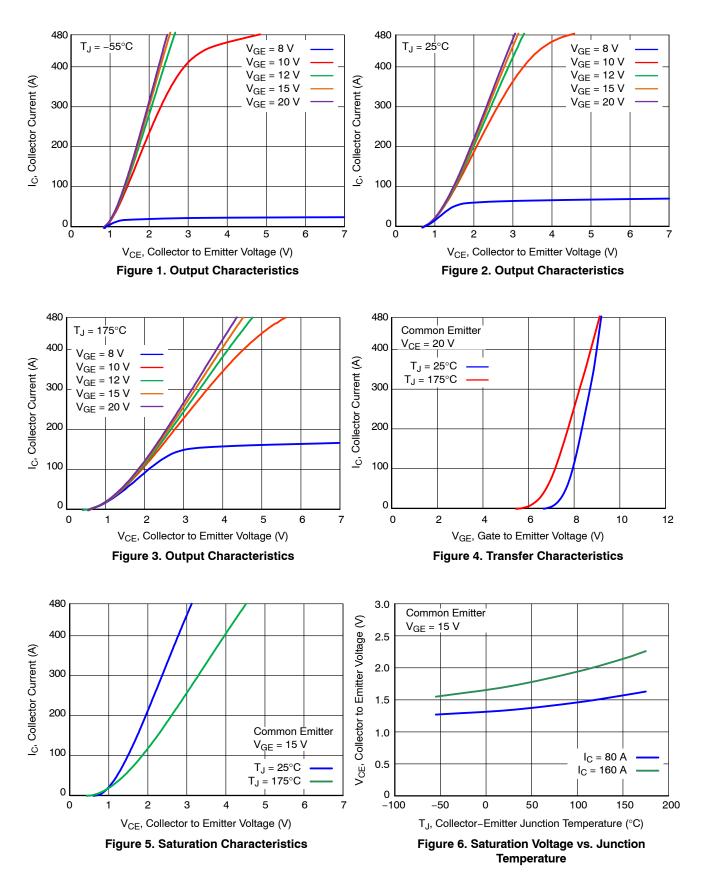
ON CHARACTERISTICS

Gate-to-Emitter Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 160 \text{ mA}$	5.6	6.5	7.4	V
Collector-to-Emitter Saturation Voltage	V _{CE(sat)}	V_{GE} = 15 V, I _C = 160 A, T _J = 25°C	-	1.7	2.0	
		V_{GE} = 15 V, I_{C} = 160 A, T_{J} = 175°C	-	2.4	-	

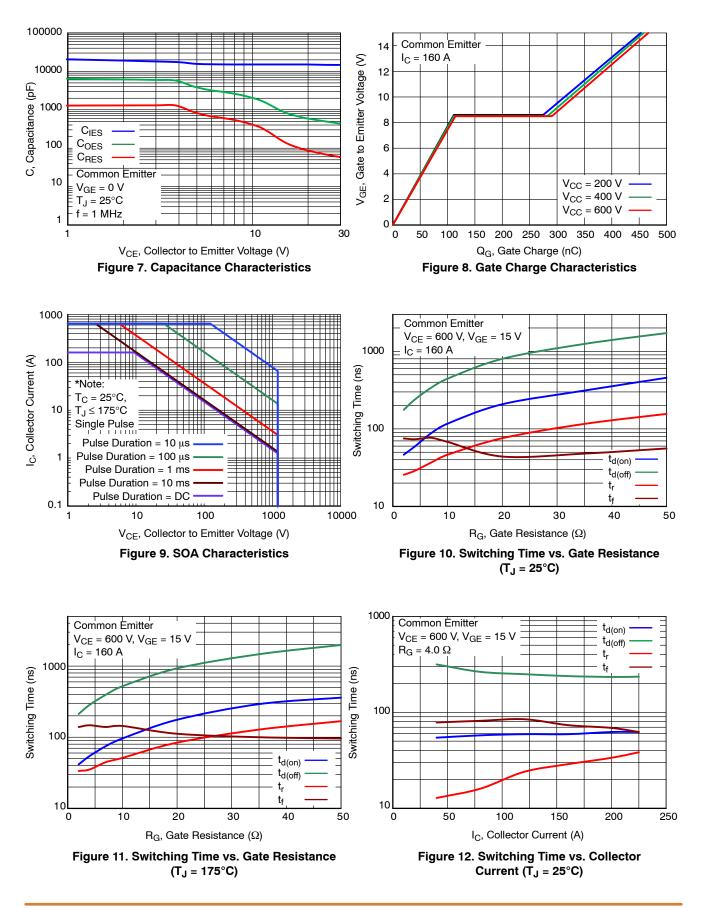
DYNAMIC CHARACTERISTICS

Input Capacitance	C _{ies}	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	-	15203	-	pF
Output Capacitance	C _{oes}		-	432	-	
Reverse Transfer Capacitance	C _{res}		-	57	-	
Total Gate Charge	Qg	V _{CE} = 600 V, V _{GE} = 15 V, I _C = 160 A	-	474	-	nC
Gate-to-Emitter Charge	Q _{ge}	IC = 100 A	-	126	-	
Gate-to-Collector Charge	Q _{gc}		-	172	-	

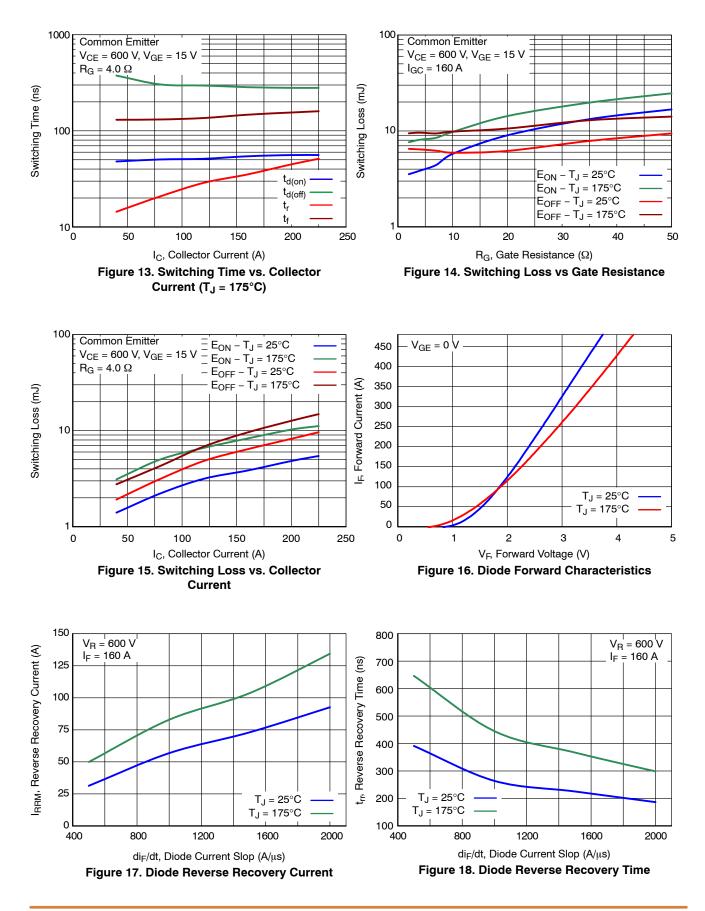
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD


Turn-on Delay Time	t _{d(on)}	V _{CE} = 600 V, V _{GE} = 15 V I _C = 80 A R _G = 4.0 Ω T _J = 25°C	-	56.8	-	ns
Rise Time	t _r	$I_{\rm C} = 80 {\rm A}{\rm R}_{\rm G} = 4.0 \Omega {\rm I}_{\rm J} = 25^{\circ}{\rm C}$	-	16.8	-	
Turn-off Delay Time	t _{d(off)}		-	259.2	-	
Fall Time	t _f		-	72	-	
Turn-on Switching Loss	E _{on}		-	2.3	-	mJ
Turn-off Switching Loss	E _{off}		-	2.8	-	
Total Switching Loss	E _{ts}		_	5.1	-	
Turn-on Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}$	-	60.8	-	ns
Rise Time	t _r	$I_{\rm C} = 160 \text{ A R}_{\rm G} = 4.0 \ \Omega \text{ T}_{\rm J} = 25^{\circ} \text{C}$	_	28.8	-	
Turn-off Delay Time	t _{d(off)}		-	236.8	-	
Fall Time	t _f		-	67.2	-	
Turn-on Switching Loss	E _{on}		-	4.2	-	mJ
Turn-off Switching Loss	E _{off}		-	5.9	-	
Total Switching Loss	E _{ts}		-	10.1	_	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC, INDU	CTIVE LOAD	•				
Turn-on Delay Time	t _{d(on)}	V _{CE} = 600 V, V _{GE} = 15 V	-	50.4	_	ns
Rise Time	tr	I _C = 80 A R _G = 4.0 Ω T _J = 175°C	-	20.8	-	
Turn-off Delay Time	t _{d(off)}		-	299.2	_	
Fall Time	t _f		-	107.2	-	
Turn-on Switching Loss	E _{on}		-	5.2	_	mJ
Turn-off Switching Loss	E _{off}		-	3.8	_	
Total Switching Loss	E _{ts}		-	9	_	
Turn-on Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}$	-	54.4	_	ns
Rise Time	t _r	$I_{\rm C} = 160 \text{ A R}_{\rm G} = 4.0 \ \overline{\Omega} \text{ T}_{\rm J} = 175^{\circ} \text{C}$	-	36.8	_	
Turn-off Delay Time	t _{d(off)}		-	281.6	_	
Fall Time	t _f		-	120	_	
Turn-on Switching Loss	E _{on}		-	8.4	-	mJ
Turn-off Switching Loss	E _{off}		-	8.7	_	
Total Switching Loss	E _{ts}		-	17.1	_	
DIODE CHARACTERISTICS						
Forward Voltage	V _F	I _F = 160 A, T _J = 25°C	1.74	2.04	2.34	V
		I _F = 160 A, T _J = 175°C	-	2.2	_	
DIODE SWITCHING CHARACTERISTIC	S, INDUCTIVE LO	DAD				
Reverse Recovery Time	t _{rr}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 80 \text{ A},$	-	193.7	-	ns
Reverse Recovery Charge	Q _{rr}	$dI_F/dt = 1000 \text{ A}/\mu \text{s}, T_J = 25^{\circ}\text{C}$	-	4.8	_	μC
Reverse Recovery Energy	E _{REC}		-	1.7	_	mJ
Peak Reverse Recovery Current	I _{RRM}		-	49.5	_	А
Reverse Recovery Time	t _{rr}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 160 \text{ A},$	-	264.1	_	ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt = 1000 A/µs, T _J = 25°C	-	7.6	_	μC
Reverse Recovery Energy	E _{REC}		-	2.7	_	mJ
Peak Reverse Recovery Current	I _{RRM}		-	56.6	_	А
Reverse Recovery Time	t _{rr}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 80 \text{ A},$	-	320.5	_	ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt = 1000 A/µs, T _J = 175°C	-	12.1	_	μC
Reverse Recovery Energy	E _{REC}		-	4.6	-	mJ
Peak Reverse Recovery Current	I _{RRM}		-	75.5	_	Α
Reverse Recovery Time	t _{rr}	$V_{\rm R} = 600 \text{ V}, I_{\rm F} = 160 \text{ A},$	-	499.1	-	ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt = 1000 A/µs, T _J = 175°C	-	18.4	-	μC
Reverse Recovery Energy	E _{REC}	1	-	7.2	-	mJ
Peak Reverse Recovery Current	I _{RRM}	1	_	82.2	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

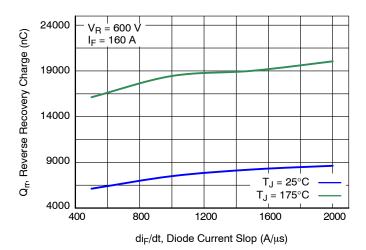
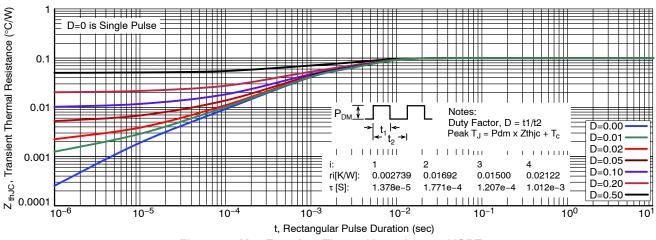
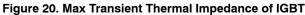
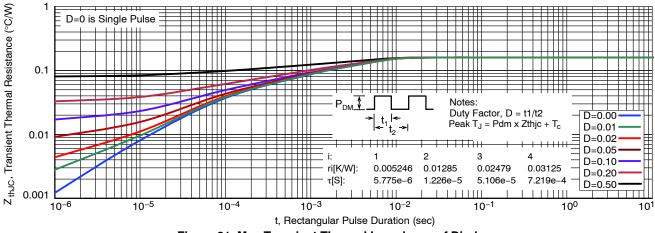
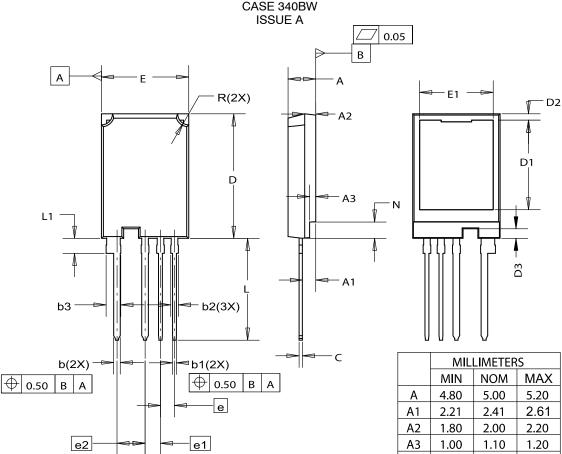





Figure 19. Diode Stored Charge



PACKAGE DIMENSIONS

TO-247-PLUS-4L 15.80x22.54x5.00, 2.54P CASE 340BW

NOTES:

A. NO INDUSTRY STANDARS APPLIES TO THIS PACKAGE. B. ALL DIMENSIONS ARE IN MILLIMETERS.

C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

D. DRAWING CONFORMS TO ASME Y14.5-2009.

	MIL	LIMETER	S
	MIN	NOM	MAX
А	4.80	5.00	5.20
A1	2.21	2.41	2.61
A2	1.80	2.00	2.20
A3	1.00	1.10	1.20
b	1.07	1.20	1.33
b1	0.57	0.70	0.83
b2	1.20	1.40	1.60
b3	2.47	2.67	2.87
С	0.50	0.60	0.70
D	22.34	22.54	22.74
D1	16.00	16.20	16.40
D2	0.96	1.16	1.36
D3	1.52	1.72	1.92
е	2	2.54BSC	
e1	2	2.79BSC	2
e2	5	5.08BSC	
Е	15.60	15.80	16.00
E1	13.10	13.30	13.50
L	18.12	18.42	18.72
L1	2.52	2.72	2.92
R	1.90	2.00	2.10
Ν	2.75	2.95	3.15

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales