IGBT – Power, Co-PAK N-Channel, Field Stop VII (FS7), TO247-4L 1200 V, 1.7 V, 75 A # FGY4L75T120SWD #### Description Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 4-lead package, FGY4L75T120SWD offers the optimum performance with low switching and conduction losses for high-efficiency operations in various applications like Solar Inverter, UPS and ESS. #### **Features** - Maximum Junction Temperature $T_J = 175$ °C - Positive Temperature Coefficient for Easy Parallel Operation - High Current Capability - Smooth and Optimized Switching - Low Switching Loss - RoHS Compliant #### **Applications** - Solar Inverter - UPS - Energy Storage System ## **MAXIMUM RATINGS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Param | Symbol | Value | Unit | | |--|---|-----------------|------|---| | Collector-to-Emitter Volt | V _{CE} | 1200 | V | | | Gate-to-Emitter Voltage | | V _{GE} | ±20 | | | Transient Gate-to-Emitte | er Voltage | 1 | ±30 | | | Collector Current | T _C = 25°C (Note 1) | I _C | 150 | Α | | | T _C = 100°C | 1 | 75 | | | Power Dissipation | T _C = 25°C | P _D | 555 | W | | | T _C = 100°C | 1 | 278 | | | Pulsed Collector
Current | T _C = 25°C,
t _p = 10 μs (Note 2) | I _{CM} | 300 | Α | | Diode Forward $T_C = 25^{\circ}C$ (Note 1) | | Ι _Ε | 150 | | | Current T _C = 100°C | | 1 | 75 | | | Pulsed Diode Forward
Current | I _{FM} | 300 | | | | Operating Junction and S
Range | T _J , T _{stg} | -55 to
+175 | °C | | | Lead Temperature for So | T_L | 265 | | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Value limited by bond wire - 2. Repetitive rating: Pulse width limited by max. junction temperature. | BV _{CES} | V _{CE(SAT)_TYP} | lc | |-------------------|--------------------------|------| | 1200 V | 1.7 V | 75 A | #### **PIN CONNECTIONS** TO-247-4LD CASE 340BW #### **MARKING DIAGRAM** A = Assembly Location YWW = Date code (Year & week) ZZ = Assembly Lot Y4L75120SWD = Specific Device Code #### **ORDERING INFORMATION** | Device | Package | Shipping | |----------------|-------------------------|--------------------| | FGY4L75T120SWD | TO-247-4LD
(Pb-Free) | 30 Units /
Tube | ### THERMAL CHARACTERISTICS | | | Value | | | | |--|------------------|-------|------|------|------| | Parameter | Symbol | Min | Тур | Max | Unit | | Thermal Resistance, Junction-to-Case for IGBT | $R_{ heta JC}$ | _ | 0.18 | 0.27 | °C/W | | Thermal Resistance, Junction-to-Case for Diode | $R_{\theta JCD}$ | _ | 0.3 | 0.45 | | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | - | - | 40 | | ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |---|----------------------|--|------|-------|------|-------| | OFF CHARACTERISTICS | | | | | - | | | Collector-to-Emitter Breakdown Voltage | BV _{CES} | V _{GE} = 0 V, I _C = 1 mA | 1200 | _ | - | V | | Breakdown Voltage Temperature Coefficient | ΔBV_CES | $V_{GE} = 0 \text{ V, } I_{C} = 9.99 \text{ mA}$ | - | 1120 | - | mV/°C | | | ΔT_{J} | | | | | | | Collector-to-Emitter Cut-Off Current | I _{CES} | V _{GE} = 0 V, V _{CE} = V _{CES} | - | - | 40 | μΑ | | Gate-to-Emitter Leakage Current | I _{GES} | $V_{GE} = \pm 20 \text{ V}, V_{CE} = 0 \text{ V}$ | - | _ | ±400 | nA | | ON CHARACTERISTICS | | | | | | | | Gate-to-Emitter Threshold Voltage | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_C = 75 \text{ mA}$ | 5.6 | 6.5 | 7.4 | V | | Collector-to-Emitter Saturation Voltage | V _{CE(sat)} | V _{GE} = 15 V, I _C = 75 A, T _J = 25°C | - | 1.7 | 2.0 | | | | | V _{GE} = 15 V, I _C = 75 A, T _J = 175°C | - | 2.4 | - | | | DYNAMIC CHARACTERISTICS | | | | | | | | Input Capacitance | C _{ies} | V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz | - | 7190 | - | pF | | Output Capacitance | C _{oes} |] | - | 222 | - | | | Reverse Transfer Capacitance | C _{res} |] | - | 30.1 | - | | | Total Gate Charge | Qg | V _{CE} = 600 V, V _{GE} = 15 V,
I _C = 75 A | - | 225.6 | - | nC | | Gate-to-Emitter Charge | Q_{ge} | I _C = 75 A | - | 66.4 | - | | | Gate-to-Collector Charge | Q_{gc} |] | - | 84.8 | - | | | SWITCHING CHARACTERISTIC, INDUCTIV | E LOAD | | | | | | | Turn-on Delay Time | t _{d(on)} | $V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V}$
$I_{C} = 37.5 \text{ A R}_{G} = 11.5 \Omega T_{J} = 25^{\circ}\text{C}$ | - | 62.8 | - | ns | | Rise Time | t _r | $I_{C} = 37.5 \text{ A H}_{G} = 11.5 \Omega I_{J} = 25^{\circ}\text{C}$ | - | 20.8 | - | | | Turn-off Delay Time | t _{d(off)} |] | - | 273.6 | - | | | Fall Time | t _f |] | - | 74 | - | | | Turn-on Switching Loss | E _{on} |] | - | 1.6 | - | mJ | | Turn-off Switching Loss | E _{off} |] | - | 1.2 | - | 1 | | Total Switching Loss | E _{ts} |] | - | 2.8 | - | | | Turn-on Delay Time | t _{d(on)} | V_{CE} = 600 V, V_{GE} = 15 V I_{C} = 75 A R_{G} = 11.5 Ω T_{J} = 25°C | - | 65.6 | - | ns | | Rise Time | t _r | $I_C = 75 \text{ A H}_G = 11.5 \Omega \text{ T}_J = 25^{\circ}\text{C}$ | - | 28.8 | - | | | Turn-off Delay Time | t _{d(off)} | 1 | - | 241.6 | - | | | Fall Time | t _f | | - | 62.4 | - | | | Turn-on Switching Loss | E _{on} | | - | 2.9 | - | mJ | | Turn-off Switching Loss | E _{off} | | - | 2.1 | - | | | Total Switching Loss | E _{ts} |] | - | 5.0 | _ | | ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) (continued) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |---------------------------------|---------------------|--|------|-------|------|------| | SWITCHING CHARACTERISTIC, INDUC | CTIVE LOAD | | | | | | | Turn-on Delay Time | t _{d(on)} | V _{CE} = 600 V, V _{GE} = 15 V | - | 51.2 | - | ns | | Rise Time | t _r | I _C = 37.5 A R _G = 11.5 Ω T _J = 175°C | - | 24.0 | - | 1 | | Turn-off Delay Time | t _{d(off)} | | - | 323.2 | - | 1 | | Fall Time | t _f | | - | 126.4 | - | 1 | | Turn-on Switching Loss | E _{on} | | - | 3.1 | - | mJ | | Turn-off Switching Loss | E _{off} | | - | 1.8 | - | 1 | | Total Switching Loss | E _{ts} | | - | 4.9 | - | 1 | | Turn-on Delay Time | t _{d(on)} | V _{CE} = 600 V, V _{GE} = 15 V | - | 57.2 | - | ns | | Rise Time | t _r | $I_C = 75 \text{ A R}_G = 11.5 \Omega \text{ T}_J = 175^{\circ}\text{C}$ | - | 35.2 | - | 1 | | Turn-off Delay Time | t _{d(off)} | | - | 280 | - | 1 | | Fall Time | t _f | | - | 104 | - | 1 | | Turn-on Switching Loss | E _{on} | | - | 5.2 | - | mJ | | Turn-off Switching Loss | E _{off} | | - | 2.8 | - |] | | Total Switching Loss | E _{ts} | | - | 8.1 | - | 1 | | DIODE CHARACTERISTICS | • | | | | | - | | Forward Voltage | V _F | I _F = 75 A, T _J = 25°C | 1.74 | 2.04 | 2.34 | V | | | | I _F = 75 A, T _J = 175°C | - | 2.2 | - | | | DIODE SWITCHING CHARACTERISTIC | S, INDUCTIVE LO | DAD | | | | | | Reverse Recovery Time | t _{rr} | V_R = 600 V, I _F = 37.5 A, dI _F /dt = 1000 A/ μ s, T _J = 25°C | - | 145.3 | - | ns | | Reverse Recovery Charge | Q _{rr} | | - | 2.56 | - | μС | | Reverse Recovery Energy | E _{REC} | | - | 0.77 | - | mJ | | Peak Reverse Recovery Current | I _{RRM} |] | - | 35.2 | = | Α | | Reverse Recovery Time | t _{rr} | V _R = 600 V, I _F = 75 A, | - | 208 | = | ns | | Reverse Recovery Charge | Q _{rr} | $dI_F/dt = 1000 \text{ A/}\mu\text{s}, T_J = 25^{\circ}\text{C}$ | - | 4.22 | - | μC | | Reverse Recovery Energy | E _{REC} | | - | 1.32 | = | mJ | | Peak Reverse Recovery Current | I _{RRM} |] | - | 40.6 | = | Α | | Reverse Recovery Time | t _{rr} | V_{R} = 600 V, I_{F} = 37.5 A, dI_{F}/dt = 1000 A/ μ s, T_{J} = 175°C | - | 221.7 | = | ns | | Reverse Recovery Charge | Q _{rr} | | - | 5.54 | = | μС | | Reverse Recovery Energy | E _{REC} | | - | 1.85 | - | mJ | | Peak Reverse Recovery Current | I _{RRM} | 1 | - | 48.7 | - | Α | | Reverse Recovery Time | t _{rr} | V _R = 600 V, I _F = 75 A, | - | 307.1 | - | ns | | Reverse Recovery Charge | Q _{rr} | dI _F /dt = 1000 A/μs, T _J = 175°C | - | 9.15 | - | μC | | Reverse Recovery Energy | E _{REC} | | - | 2.95 | - | mJ | | Peak Reverse Recovery Current | I _{RRM} | 1 | - | 59.5 | - | Α | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **TYPICAL CHARACTERISTICS** Figure 5. Saturation Characteristics Figure 6. Saturation Voltage vs. Junction Temperature #### **TYPICAL CHARACTERISTICS** Figure 7. Capacitance Characteristics Figure 8. Gate Charge Characteristics Figure 9. SOA Characteristics Figure 10. Switching Time vs. Gate Resistance $(T_J = 25^{\circ}C)$ Figure 11. Switching Time vs. Gate Resistance $(T_J = 175^{\circ}C)$ Figure 12. Switching Time vs. Collector Current $(T_J = 25^{\circ}C)$ #### **TYPICAL CHARACTERISTICS** Figure 13. Switching Time vs. Collector Current (T_J = 175°C) Figure 14. Switching Loss vs Gate Resistance 40 50 Figure 15. Switching Loss vs. Collector Current Figure 16. Diode Forward Characteristics Figure 17. Diode Reverse Recovery Current Figure 18. Diode Reverse Recovery Time #### **TYPICAL CHARACTERISTICS** Figure 19. Diode Stored Charge Figure 20. Max Transient Thermal Impedance of IGBT Figure 21. Max Transient Thermal Impedance of Diode #### **PACKAGE DIMENSIONS** ## TO-247-PLUS-4L 15.80x22.54x5.00, 2.54P #### NOTES: e2 A. NO INDUSTRY STANDARS APPLIES TO THIS PACKAGE. B. ALL DIMENSIONS ARE IN MILLIMETERS. e1 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. D. DRAWING CONFORMS TO ASME Y14.5-2009. | _ | | _ | | | | | |----|-------------|---------|-------|--|--|--| | | MILLIMETERS | | | | | | | | MIN | NOM | MAX | | | | | Α | 4.80 | 5.00 | 5.20 | | | | | Α1 | 2.21 | 2.41 | 2.61 | | | | | A2 | 1.80 | 2.00 | 2.20 | | | | | А3 | 1.00 | 1.10 | 1.20 | | | | | b | 1.07 | 1.20 | 1.33 | | | | | b1 | 0.57 | 0.70 | 0.83 | | | | | b2 | 1.20 | 1.40 | 1.60 | | | | | b3 | 2.47 | 2.67 | 2.87 | | | | | С | 0.50 | 0.60 | 0.70 | | | | | D | 22.34 | 22.54 | 22.74 | | | | | D1 | 16.00 | 16.20 | 16.40 | | | | | D2 | 0.96 | 1.16 | 1.36 | | | | | D3 | 1.52 | 1.72 | 1.92 | | | | | е | 2 | 2.54BSC | | | | | | e1 | 2 | 2.79BSC |) | | | | | e2 | 5.08BSC | | | | | | | Ε | 15.60 | 15.80 | 16.00 | | | | | E1 | 13.10 | 13.30 | 13.50 | | | | | L | 18.12 | 18.42 | 18.72 | | | | | L1 | 2.52 | 2.72 | 2.92 | | | | | R | 1.90 | 2.00 | 2.10 | | | | | Ν | 2.75 | 2.95 | 3.15 | | | | - E1 - - D2 D₁ onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales