

MOSFET – P-Channel, QFET®

-200 V, -11.5 A, 470 m Ω

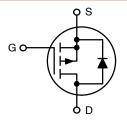
FQB12P20

General Description

These P-Channel enhancement mode power field effect transistors are produced using onsemi's proprietary, planar stripe, DMOS

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters.

Features

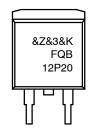

- -11.5 A, -200 V, $R_{DS(on)} = 0.47 \Omega$ @ $V_{GS} = -10 \text{ V}$
- Low Gate Charge (Typical 31 nC)
- Low Crss (typical 30 pF)
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	FQB12P20	Unit
V _{DSS}	Drain-Source Voltage	-200	V
I _D	Drain Current - Continuous (T _C = 25°C)	-11.5	Α
	− Continuous (T_C = 100°C)	-7.27	Α
I _{DM}	Drain Current - Pulsed (Note 1)	-46	Α
V _{GSS}	Gate-Source Voltage	+30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	810	mJ
I _{AR}	Avalanche Current (Note 1)	-11.5	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)	12	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)	-5.5	V/ns
P_{D}	Power Dissipation (T _A = 25°C) *	3.13	W
	Power Dissipation (T _C = 25°C)	120	W
	− Derate above 25°C	0.96	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DSS}	R _{DS(ON)} MAX	I _D MAX	
-200 V	0.47 Ω @ –10 V	–11.5 A	



P-CHANNEL MOSFET

D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ

MARKING DIAGRAM

FQB12P20 = Specific Device Code &Z = Assembly Plant Code = Digit Date Code &3

= Lot Run Traceability Code &K

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

^{*}When mounted on the minimum pad size recommended (PCB Mount) 1. Repetitive Rating: Pulse width limited by maximum junction temperature

^{2.} L = 9.2 mH, I_{AS} = -11.5 A, V_{DD} = -50 V, R_G = 25 Ω , Starting T_J = 25° C 3. I_{SD} \leq -11.5 A, di/dt \leq 300 A/ μ s, V_{DD} \leq BV_{DSS}, Starting T_J = 25° C

THERMAL RESISTANCE MAXIMUM RATINGS

Symbol	Parameter	Тур	Max	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	-	1.04	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *	-	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	-	62.5	°C/W

^{*}When mounted on the minimum pad size recommended (PCB Mount)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-200	_	-	V	
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C	1	-	-	V/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -200 V, V _{GS} = 0 V	-	_	-1	μΑ	
		V _{DS} = -160 V, T _C = 125°C	-	-	-10	μΑ	
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	-100	nA	
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = 30 V, V _{DS} = 0 V	ı	-	100	nA	
ON CHARAC	TERISTICS						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-3.0	_	-5.0	V	
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_D = -5.75 \text{ A}$	-	0.36	0.47	Ω	
9FS	Forward Transconductance	V _{DS} = -40 V, I _D = -5.75 A (Note 4)	-	6.4	-	S	
DYNAMIC CH	IARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$	-	920	1200	pF	
C _{oss}	Output Capacitance		-	190	250	pF	
C _{rss}	Reverse Transfer Capacitance		-	30	40	pF	
SWITCHING	CHARACTERISTICS			•	•		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -100 \text{ V}, I_D = -11.5 \text{ A},$	_	20	50	ns	
t _r	Turn-On Rise Time	$R_G = 25 \Omega$ (Note 4, 5)	_	195	400	ns	
t _{d(off)}	Turn-Off Delay Time		1	40	90	ns	
t _f	Turn-Off Fall Time		1	60	130	ns	
Qg	Total Gate Charge	$V_{DS} = -160 \text{ V}, I_D = -11.5 \text{ A},$	-	31	40	nC	
Q_{gs}	Gate-Source Charge	V _{GS} = −10 V (Note 4, 5)	1	8.1	-	nC	
Qg _d	Gate-Drain Charge		-	16	-	nC	
DRAIN-SOUI	RCE DIODE CHARACTERISTICS AND MAXII	MUMUM RATINGS					
I _S	Maximum Continuous Drain-Source Diode Forward Current		-	_	-11.5	Α	
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		-	_	-46	Α	
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -11.5 A	-	_	-5.0	V	
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } I_S = -11.5 \text{ A,}$	-	180	-	ns	
Q _{rr}	Reverse Recovery Charge	dl _F / dt = 100 A/μs (Note 4)	-	1.44	-	μС	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse width $\leq 300~\mu s$, Duty cycle $\leq 2\%$ 5. Essentially independent of operating temperature

TYPICAL CHARACTERISTICS

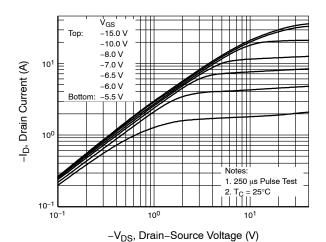


Figure 1. On Characteristics

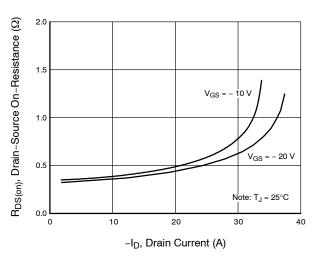


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

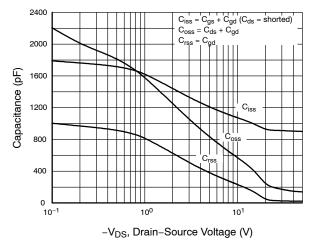


Figure 5. Capacitance Characteristics

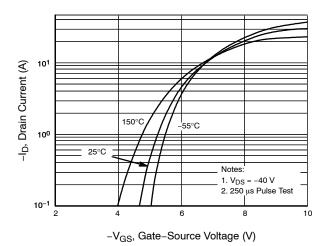


Figure 2. Transfer Characteristics

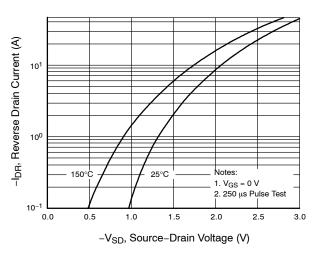


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

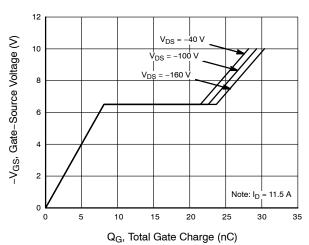


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS (continued)

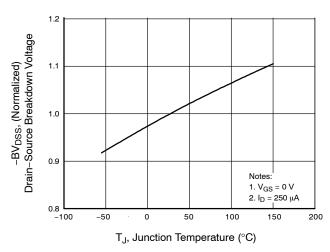


Figure 7. Breakdown Voltage Variation vs. Temperature

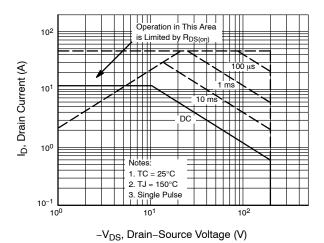
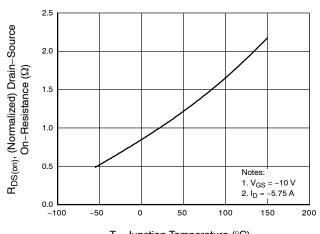



Figure 9. Maximum Safe Operating Area

T_J, Junction Temperature (°C)

Figure 8. On-Resistance Variation vs. Temperature

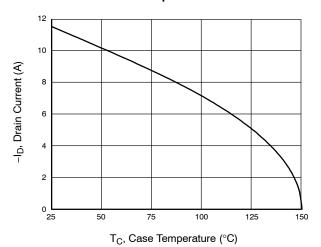
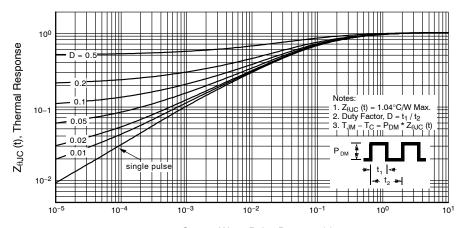



Figure 10. Maximum Drain Current vs.
Case Temperature

t₁, Square Wave Pulse Duration (s)

Figure 11. Capacitance Characteristics

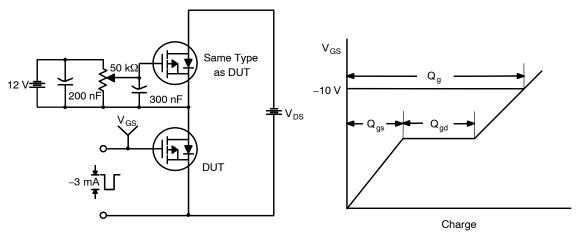


Figure 12. Gate Charge Test Circuit & Waveform

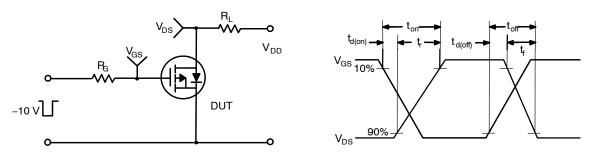


Figure 13. Resistive Switching Test Circuit & Waveforms

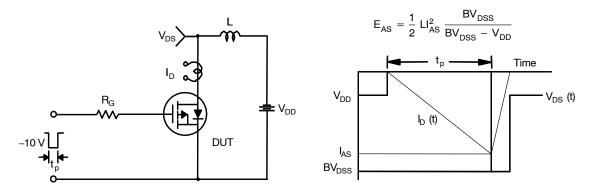
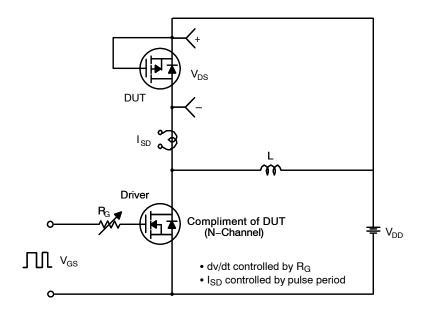



Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

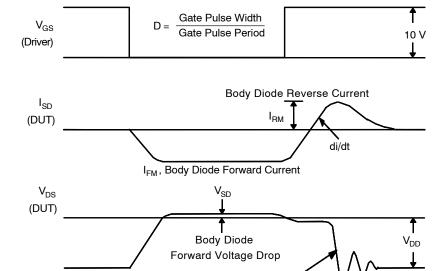


Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

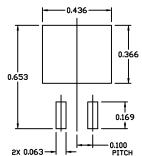
Body Diode Recovery dv/dt

PACKAGE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Reel Size	Tape Width	Shipping [†]
FQB12P20TM	FQB12P20	D ² PAK (Pb-Free)	330 mm	24 mm	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

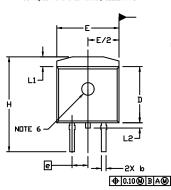
QFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

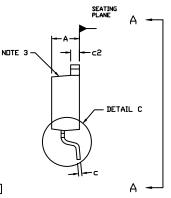


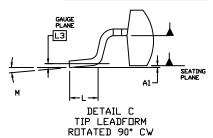
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ

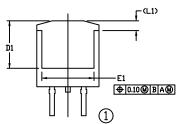
ISSUE F

DATE 11 MAR 2021

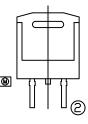


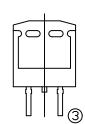

RECOMMENDED MOUNTING FOOTPRINT

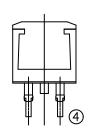

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: INCHES
- CHAMFER OPTIONAL
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE DUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... OPTIONAL CONSTRUCTION FEATURE CALL DUTS.

	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
A	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
ھ	0.020	0.039	0.51	0.99
u	0.012	0.029	0.30	0.74
5	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260		6.60	
E	0.380	0.420	9.65	10.67
E1	0.245	-	6.22	
e	0.100 BSC		2.54 BSC	
Ξ	0.575	0.625	14.60	15.88
٦	0.070	0.110	1.78	2.79
L1		0.066		1.68
L2		0.070		1.78
L3	0.010 BSC		0.25 BSC	
М	0*	8*	0*	8*







VIEW A-A

VIEW A-A OPTIONAL CONSTRUCTIONS

AYWW

XXXXXXXXX

Rectifier

AKA

GENERIC MARKING DIAGRAMS*

XXXXXX

XXYMW

SSG

XXXXXX = Specific Device Code = Assembly Location Α

WL = Wafer Lot

= Year ww = Work Week

W = Week Code (SSG) Μ = Month Code (SSG)

G = Pb-Free Package = Polarity Indicator **AKA**

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

IC

XXXXXXXX

AWLYWWG

98AON56370E

Standard

XXXXXXXX

AYWW

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

DOCUMENT NUMBER:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales