onsemi

Single Bit Uni-Directional Translator

FXLP34

Description

The FXLP34 is a single translator with two separate supply voltages: V_{CC1} for input translation voltages and V_{CC} for output translation voltages. The FXLP34 is part of **onsemi**'s Ultra Low Power (ULP) series of products. This device operates with VCC values from 1.0 V to 3.6 V, and is intended for use in portable applications that require ultra low power consumption.

The internal circuit is composed of a minimum of buffer stages, to enable ultra low dynamic power.

The FXLP34 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- 1.0 V to 3.6 V V_{CC} Supply Voltage
- Converts Any Voltage (1.0 V to 3.6 V) to (1.0 V to 3.6 V)
- 4.6V Tolerant Inputs and Outputs
- t_{PD}:
 - ◆ 4 ns Typical for 3.0 V to 3.6 V V_{CC}
- Power–Off High Impedance Inputs and Outputs
- Static Drive (I_{OH}/I_{OL}) :
 - + ± 2.6 mA at 3.00 V V_{CC}
- Uses Proprietary Quiet Series Noise / EMI Reduction Circuitry
- Ultra–Small MicroPak[™] Leadless Packages
- Ultra-Low Dynamic Power
- These are Pb–Free Devices

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

PIN CONFIGURATION

Figure 1. SC70 (Top View)

Figure 2. MicroPak (Top Through View)

PIN DEFINITIONS

Pin # SC70	Pin # MicroPak	Name	Description
1	1	Vcc1	Input Translation Voltage
2	2	А	Input
3	3	GND	Ground
4	4	Y	Output
	5	NC	No Connect
5	6	Vcc	Output Translation Voltage

TRUTH TABLE

Input	Outputs
A	Y
L	L
н	н

H = Logic Level HIGH L = Logic Level Low

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramete	r	Min	Max	Unit
Vcc, Vcc1	Supply Voltage		-0.5	+4.6	V
Vin	DC Input Voltage		-0.5	+4.6	V
Vout	DC Output Voltage HIGH or LOW State (Note 1)		-0.5	V _{CC} + 0.5 V	V
		V _{CC} = 0 V	-0.5	+4.6	
Ік	DC Input Diode Current	DC Input Diode Current V _{IN} < 0			mA
Іок	DC Output Diode Current V _{OUT} < 0 V		-	-50	mA
		Vout > Vcc	-	+50	
IOH/IOL	DC Output Source/Sink Current		-	±50	mA
ICC or IGND	DC V_{CC} or Ground Current per Supply Pi	n	-	±100	mA
Тѕтс	Storage Temperature Range		-65	150	°C
PD	Power Dissipation at +85°C	SC70–6	-	180	mW
	MicroPak™–6		-	130	
		MicroPak2 [™] –6	-	120	
ESD	Human Body Model, JEDEC:JESD22-A1	-	4000	V	
	Charge Device Model, JEDEC:JESD22-0	C101	_	2000	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. I_O Absolute Maximum Rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
Vcc, Vcc1	Supply Voltage		1.0	3.6	V
Vin	Input Voltage		0	3.6	V
Vout	Output Voltage	HIGH or LOW State	0	Vcc	V
		V _{CC} = 0 V	0	3.6	
IOH/IOL	Output Current in I _{OH} /I _{OL}	V _{CC} = 3.0 to 3.6 V	-	±2.6	mA
		V_{CC} = 2.3 to 2.7 V	-	±2.1	
		V _{CC} = 1.65 to 1.95 V	-	±1.5	
		V _{CC} = 1.40 to 1.60 V	-	±1.0	
		V _{CC} = 1.10 to 1.30 V	-	±0.5	
		V _{CC} = 1.0 V	-	±20	μΑ
T _A	Operating Temperature, Free Air		-40	+85	°C
θја	Thermal Resistance	SC70-6	-	425	°C/W
		MicroPak-6	-	500	
		MicroPak2-6	-	560	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 2. Unused inputs must be held HIGH or LOW. They may not float.

ELECTRICAL CHARACTERISTIICS

					T _A = +25°C		$T_A = -40$ to $85^{\circ}C$		
Symbol	Parameter	Condition	V _{CC} (V)	V _{CC1} (V)	Min	Max	Min	Max	Unit
V _{IH}	HIGH		1.0 to 3.6	1.0	0.65 x V _{CCI}	_	0.65 x V _{CCI}	-	V
	Input			$1.10 \le V_{CC1} \le 1.30$	0.65 x V _{CCI}	_	0.65 x V _{CCI}	-	
	(V _{CC1})			$1.40 \le V_{CC1} \le 1.60$	0.65 x V _{CCI}	_	0.65 x V _{CCI}	-	
				$1.65 \le V_{CC1} \le 1.95$	0.65 x V _{CCI}	_	0.65 x V _{CCI}	-	
				$2.30 \leq V_{CC1} \leq 2.70$	1.6	_	1.6	-	
				$3.00 \leq V_{CC1} \leq 3.60$	2.1	_	2.1	_	
V _{IL}	LOW		1.0 to 3.6	1.0	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	V
	Input			$1.10 \leq V_{CC1} \leq 1.30$	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	
	(V _{CC1})			$1.40 \le V_{CC1} \le 1.60$	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	
				$1.65 \le V_{CC1} \le 1.95$	-	0.35 x V _{CCI}	-	0.35 x V _{CCI}	
				$2.30 \leq V_{CC1} \leq 2.70$	-	0.7	-	0.7	
				$3.00 \leq V_{CC1} \leq 3.60$	-	0.9	-	0.9	
V _{OH}	HIGH	I _{OH} = -20 μA	1.0	1.0 to 3.6	V _{CC} – 0.1	_	V _{CC} – 0.1	_	V
	Output		$1.10 \leq V_{CC1} \leq 1.30$		V _{CC} – 0.1	_	V _{CC} – 0.1	_	
	(V _{CC})		$1.40 \leq V_{CC1} \leq 1.60$		V _{CC} – 0.1	_	V _{CC} – 0.1	_	
			$1.65 \leq V_{CC1} \leq 1.95$		V _{CC} – 0.1	_	V _{CC} – 0.1	_	
			$2.30 \leq V_{CC1} \leq 2.70$		V _{CC} – 0.1	_	V _{CC} – 0.1	_	
			$3.00 \leq V_{CC1} \leq 3.60$		V _{CC} – 0.1	-	V _{CC} – 0.1	-	
		I _{OH} = -0.5 mA	$1.10 \leq V_{CC1} \leq 1.30$	1.0 to 3.6	$0.75 \times V_{CC}$	_	$0.70 \text{ x V}_{\text{CC}}$	_	
		I _{OH} = -1.0 mA	$1.40 \leq V_{CC1} \leq 1.60$		1.07	_	0.99	_	
		I _{OH} = -1.5 mA	$1.65 \leq V_{CC1} \leq 1.95$		1.24	_	1.22	_	
		I _{OH} = -2.1 mA	$2.30 \leq V_{CC1} \leq 2.70$		1.95	_	1.87	-	
		I _{OH} = -2.6 mA	$3.00 \leq V_{CC1} \leq 3.60$		2.61	_	2.55	-	
V _{OL}	LOW	I _{OL} = 20 μA	1.0	1.0 to 3.6	-	0.1	-	0.1	V
	Output		$1.10 \leq V_{CC1} \leq 1.30$		-	0.1	-	0.1	
	(V _{CC})		$1.40 \leq V_{CC1} \leq 1.60$		-	0.1	-	0.1	
			$1.65 \leq V_{CC1} \leq 1.95$		-	0.1	-	0.1	
			$2.30 \leq V_{CC1} \leq 2.70$		-	0.1	-	0.1	
		l _{OL} = 0.5 mA	$1.10 \leq V_{CC1} \leq 1.30$	1.0 to 3.6	-	$0.30 \times V_{CC}$	-	$0.30 \times V_{CC}$	
		I _{OL} = 1.0 mA	$1.40 \leq V_{CC1} \leq 1.60$		-	0.31	-	0.37	
		I _{OL} = 1.5 mA	$1.65 \leq V_{CC1} \leq 1.95$		-	0.31	-	0.35	
		I _{OL} = 2.1 mA	$2.30 \leq V_{CC1} \leq 2.70$		-	0.31	-	0.33	
		I _{OL} = 2.6 mA	$3.00 \leq V_{CC1} \leq 3.60$		-	0.31	-	0.33	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 3.60$		1.0 to 3.6	-	±0.1	-	±1.0	μA
I _{OFF}	Power Off Leakage Current	$\begin{array}{l} 0 \leq (V_{IN},V_O) \\ \leq 3.60 \end{array}$	0	0	-	1.0	-	5.0	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	1.0 to 3.6	1.0 to 3.6	-	0.9	-	5.0	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTIICS

				٦	「 _A = +25°0	0	$T_A = -40$) to 85°C		
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	Figure
t _{PHL} ,	Propagation Delay	$C_{L} = 10 \text{ pF},$	1.0	-	26.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.0	$R_L = 1 M\Omega$	1.10 to 1.30	15.0	25.0	38.1	12.0	43.3		Figure 4
			1.40 to 1.60	14.0	24.0	36.7	11.0	42.0		
			1.65 to 1.95	13.0	23.0	36.0	10.0	41.4		
			2.30 to 2.70	12.0	22.0	35.5	9.0	40.9		
			3.00 to 3.60	11.0	21.0	35.5	8.0	40.6		
t _{PHL} ,	Propagation Delay	$C_{L} = 10 \text{ pF},$	1.0	-	18.0	-	-	-	ns	ns Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.2	$R_L = 1 M\Omega$	1.10 to 1.30	8.0	15.0	23.2	6.0	41.0		Figure 4
			1.40 to 1.60	7.5	14.0	21.7	5.5	39.1		
			1.65 to 1.95	7.0	13.0	20.9	5.0	32.3		
			2.30 to 2.70	6.5	12.0	20.4	4.5	29.6		
			3.00 to 3.60	6.0	12.0	20.2	4.0	29.4		
t _{PHL} ,	Propagation Delay	$C_{L} = 10 \text{ pF},$	1.0	-	14.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.5	$R_L = 1 M\Omega$	1.10 to 1.30	5.0	11.0	16.3	4.0	20.6		Figure 4
			1.40 to 1.60	4.8	10.0	14.8	3.5	19.3		
			1.65 to 1.95	4.5	9.0	14.1	3.0	18.7		
			2.30 to 2.70	4.0	8.0	13.5	2.5	18.0		
			3.00 to 3.60	3.5	8.0	13.3	2.0	17.8		
t _{PHL} ,	Propagation Delay	$C_{L} = 10 \text{ pF},$	1.0	-	13.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.8	$R_L = 1 M\Omega$	1.10 to 1.30	4.0	9.0	13.5	3.0	17.5		Figure 4
			1.40 to 1.60	3.5	8.0	12.0	2.5	16.3		
			1.65 to 1.95	3.0	7.0	11.3	2.0	15.6		
			2.30 to 2.70	2.5	6.0	10.7	1.5	15.0		
			3.00 to 3.60	2.5	6.0	10.5	1.0	14.7		
t _{PHL} ,	Propagation Delay	$C_{L} = 10 \text{ pF},$	1.0	-	12.0	-	-	-	ns	Figure 3,
tPLH	Output Translation V_{CC} (V) = 2.5	$R_L = 1 M\Omega$	1.10 to 1.30	3.0	7.0	10.9	2.5	14.3		Figure 4
			1.40 to 1.60	2.5	6.0	9.4	2.0	13.1		
			1.65 to 1.95	2.0	5.0	8.6	1.5	11.4		
			2.30 to 2.70	1.5	4.0	8.0	1.0	10.8		
			3.00 to 3.60	1.5	4.0	7.8	1.0	10.5		
t _{PHL} ,	Propagation Delay	$C_{L} = 10 \text{ pF},$	1.0	-	11.0	-	-	-	ns	ns Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 3.3	$R_L = 1 M\Omega$	1.10 to 1.30	3.0	6.0	10.1	2.0	13.8		Figure 4
			1.40 to 1.60	2.5	5.0	8.2	1.5	10.5		
			1.65 to 1.95	2.0	4.0	7.4	1.0	9.9		
			2.30 to 2.70	1.0	3.0	6.8	1.0	9.2		
			3.00 to 3.60	1.0	3.0	6.6	1.0	9.0		

AC ELECTRICAL CHARACTERISTIICS (continued)

					Γ _A = +25°0	C	$T_A = -40$) to 85°C		
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	Figure
t _{PHL} ,	Propagation Delay	$C_{L} = 15 \text{ pF},$	1.0	-	28.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.0	$R_L = 1 M\Omega$	1.10 to 1.30	16.0	27.0	43.0	12.0	44.8		Figure 4
			1.40 to 1.60	15.0	26.0	41.6	11.0	43.6		
			1.65 to 1.95	14.0	25.0	40.9	10.0	47.9		
			2.30 to 2.70	13.0	24.0	40.5	9.0	47.5		
			3.00 to 3.60	12.0	23.0	40.4	8.0	41.4		
t _{PHL} ,	Propagation Delay	$C_{L} = 15 \text{ pF},$	1.0	-	19.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.2	$R_L = 1 M\Omega$	1.10 to 1.30	9.0	16.0	24.6	8.0	43.1		Figure 4
			1.40 to 1.60	8.5	15.0	23.1	7.5	42.2		
			1.65 to 1.95	8.0	14.0	22.4	7.0	31.4		
			2.30 to 2.70	7.5	13.0	21.8	6.5	30.7		
			3.00 to 3.60	7.0	13.0	21.6	6.0	30.5		
t _{PHL} ,	Propagation Delay	$C_{L} = 15 \text{ pF},$	1.0	-	15.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.5	$R_L = 1 M\Omega$	1.10 to 1.30	6.0	12.0	17.2	5.5	21.5		Figure 4
			1.40 to 1.60	5.8	11.0	15.7	5.0	20.3		
			1.65 to 1.95	5.5	10.0	14.9	4.5	19.6		
			2.30 to 2.70	5.0	9.0	14.3	4.0	18.9		
			3.00 to 3.60	4.5	.0	14.2	3.5	18.7		
t _{PHL} ,	Propagation Delay	$C_{L} = 15 \text{ pF},$	1.0	-	14.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.8	$R_L = 1 M\Omega$	1.10 to 1.30	5.0	8.0	14.2	5.5	18.2		Figure 4
			1.40 to 1.60	4.5	7.0	12.7	4.0	17.0		
			1.65 to 1.95	4.0	6.0	11.9	3.5	16.3		
			2.30 to 2.70	3.5	5.0	11.3	3.0	15.7		
			3.00 to 3.60	3.5	5.0	11.2	2.5	14.4		
t _{PHL} ,	Propagation Delay	$C_{L} = 15 \text{ pF},$	1.0	-	12.0	-	-	-	ns	Figure 3,
tPLH	Output Translation V_{CC} (V) = 2.5	$R_L = 1 M\Omega$	1.10 to 1.30	4.0	7.0	11.3	3.5	14.9		Figure 4
			1.40 to 1.60	3.5	6.0	9.8	3.0	13.6		
			1.65 to 1.95	3.0	5.0	9.1	2.5	12.0		
			2.30 to 2.70	2.5	4.0	8.5	2.0	11.3		
			3.00 to 3.60	2.5	4.0	8.3	2.0	11.1		
t _{PHL} ,	Propagation Delay	C _L = 15 pF,	1.0	-	11.0	-	_	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 3.3	$R_L = 1 M\Omega$	1.10 to 1.30	3.0	6.0	10.5	2.0	14.2		Figure 4
			1.40 to 1.60	2.5	5.0	8.6	1.5	11.0		
			1.65 to 1.95	2.0	4.0	7.8	1.0	10.3		
			2.30 to 2.70	1.5	3.0	7.2	1.0	9.7	1	
			3.00 to 3.60	1.5	3.0	7.0	1.0	9.4	1	

AC ELECTRICAL CHARACTERISTIICS (continued)

				ר	「 _A = +25°(C	$T_A = -40$	to 85°C		
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	Figure
t _{PHL} ,	Propagation Delay	$C_{L} = 30 \text{ pF},$	1.0	-	34.0	-	-	-	ns	Figure 3,
t _{PLH}	V_{PLH} Output Translation $V_{CC}(V) = 1.0$	$R_L = 1 M\Omega$	1.10 to 1.30	19.0	32.0	48.6	15.0	55.5		Figure 4
			1.40 to 1.60	18.0	31.0	47.1	14.0	52.3		
			1.65 to 1.95	17.0	30.0	46.4	13.0	50.6		
			2.30 to 2.70	16.0	29.0	45.9	12.0	49.2		
			3.00 to 3.60	15.0	28.0	45.8	10.0	49.1		
t _{PHL} ,	Propagation Delay	$C_{L} = 30 \text{ pF},$	1.0	-	22.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.2	$R_L = 1 M\Omega$	1.10 to 1.30	11.0	19.0	29.0	10.0	46.5		Figure 4
			1.40 to 1.60	10.0	18.0	27.5	9.0	42.6		
			1.65 to 1.95	9.0	17.0	26.7	8.0	36.7		
			2.30 to 2.70	8.5	16.0	26.1	7.0	36.0		
			3.00 to 3.60	8.0	16.0	26.0	6.0	35.9		
t _{PHL} ,	Propagation Delay	$C_{L} = 30 \text{ pF},$	1.0	-	16.0	-	-	-	ns	Figure 3,
t _{PLH}	Output Translation V_{CC} (V) = 1.5	$R_L = 1 M\Omega$	1.10 to 1.30	6.0	13.0	19.8	5.5	25.3		Figure 4
			1.40 to 1.60	5.8	12.0	18.3	5.0	23.0		
			1.65 to 1.95	5.5	11.0	17.6	4.5	22.4		
			2.30 to 2.70	5.0	10.0	17.0	4.0	21.7		
			3.00 to 3.60	4.5	9.0	16.8	3.5	21.5		
t _{PHL} ,	Propagation Delay	$C_{L} = 30 \text{ pF},$	1.0	-	15.0	-	-	-	ns	Figure 3,
^t PLH	Output Translation V_{CC} (V) = 1.8	$R_L = 1 M\Omega$	1.10 to 1.30	5.0	11.0	16.2	5.5	20.4		Figure 4
			1.40 to 1.60	4.5	10.0	14.7	4.0	19.2		
			1.65 to 1.95	4.0	9.0	13.9	3.5	18.5		
			2.30 to 2.70	3.5	8.0	13.3	3.0	17.9		
			3.00 to 3.60	3.5	8.0	13.1	2.5	17.6		
t _{PHL} ,	Propagation Delay	$C_{L} = 30 \text{ pF},$	1.0	-	13.0	-	-	-	ns	Figure 3,
^t PLH	Output Translation V_{CC} (V) = 2.5	$R_L = 1 M\Omega$	1.10 to 1.30	4.0	8.0	12.7	3.5	15.9		Figure 4
			1.40 to 1.60	3.5	7.0	11.2	3.0	14.3		
			1.65 to 1.95	3.0	6.0	10.5	2.5	13.6		
			2.30 to 2.70	2.5	5.0	9.9	2.0	12.8		
			3.00 to 3.60	2.5	5.0	9.7	2.0	12.5		
t _{PHL} ,	Propagation Delay	$C_{L} = 30 \text{ pF},$	1.0	-	12.0	-	-	-	ns	Figure 3,
^τ ΡLΗ	V_{CC} (V) = 3.3	$R_L = 1 M\Omega$	1.10 to 1.30	3.0	8.0	11.7	2.0	15.0		Figure 4
			1.40 to 1.60	2.5	7.0	9.8	1.5	12.2		
			1.65 to 1.95	2.0	6.0	8.9	1.0	11.5		
			2.30 to 2.70	1.5	5.0	8.3	1.0	10.7		
			3.00 to 3.60	1.5	5.0	8.1	1.0	10.4		

CAPACITANCE

			Vcc/	T _A = +25°C	
Symbol	Parameter	Conditions	V _{CC1} (V)	Тур	Unit
C _{IN}	Input Capacitance			2	pF
C _{I/O}	Input/Output Capacitance			4	pF
C _{PD}	Power Dissipation Capacitance	V_{I} = 0 V or V_{CC1},f = 10 MHz, V_{CC} / V_{CC1} = 3.6 V	1.0 to 3.60	8	pF

Translator Power-up Sequence Recommendations

To ensure that the system does not experience unnecessary I_{CC} current draw, bus contention, or oscillations during power–up; adhere to the following guidelines. This device is designed with the output pin(s) supplied by V_{CC} and the input pin(s) supplied by V_{CC1} . The first recommendation is to begin by powering up the input side of the device with V_{CC1} . The Input pin(s) should be ramped with or ahead of V_{CC1} or held LOW. This guards against bus contentions and oscillations as all inputs and the

AC Loadings and Waveforms

input V_{CC1} are powered at the same time. The output V_{CC} can then be powered to the target voltage level to which the device will translate. The output pin(s) then translate to logic levels dictated by the output V_{CC} levels.

Upon completion of these steps, the device can be configured for the desired operation. Following these steps helps prevent possible damage to the translator device as well as other system components

Figure 4. Waveform for Inverting and Non-Inverting Functions

	V _{cc}						
Symbol	3.3 V ±0.3 V	2.5 V ±0.2 V	1.8 V ±0.15 V	1.5 V ±0.10 V	1.2 V ±0.10 V	1.0 V	
V _{mi}	1.5V	V _{CC1} /2					
V _{mo}	1.5V	V _{CC} /2					

ORDERING INFORMATION

Part Number	Top Mark	Package Type	Shipping [†]
FXLP34P5X	X34	5–Lead SC70, EIAJ SC–88a, 1.25 mm Wide (Pb–Free)	3000 / Tape & Reel
FXLP34L6X	X3	SIP6, 6–Lead MicroPak, 1.00 mm Wide (Pb–Free)	5000 / Tape & Reel
FXLP34FHX	Х3	UDFN6, 6–Lead, MicroPak2, 1x1 mm Body, .35 mm Pitch (Pb–Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

SIP6 1.45X1.0 CASE 127EB ISSUE O

DATE 31 AUG 2016

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88A (SC-70 5 Lead), 1.25x2 CASE 419AC-01 ISSUE A

DATE 29 JUN 2010

SIDE VIEW

END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.

DOCUMENT NUMBER:	98AON34260E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED 0	the Document Repository. COPY" in red.
DESCRIPTION:	SC-88A (SC-70 5 LEAD), 1	1.25X2	PAGE 1 OF 1
onsemi and ONSEMi are trademai the right to make changes without furth purpose, nor does onsemi assume ar special, consequential or incidental da	rks of Semiconductor Components Industries, ire notice to any products herein. onsemi mak ny liability arising out of the application or use amages. onsemi does not convey any licens	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	ntries. onsemi reserves oducts for any particular luding without limitation

UDFN6 1.0X1.0, 0.35P CASE 517DP ISSUE O DATE 31 AUG 2016 0.89 -ン|0.05|C в 1.00±0.050 А 0.35 2X 5X 0.40 PIN 1 MIN 250uM 0.66 1.00±0.050 1X 0.45 □ 0.05 C TOP VIEW - 6X 0.19 2X **RECOMMENDED LAND PATTERN** FOR SPACE CONSTRAINED PCB 0.05 C 0.90 -0.35 0.50±0.05 С 5X 0.52 SIDE VIEW 6X 0.14±0.05 (0.08) 4X — 0.73 2 DETAIL A 1 3 1X 0.57 – 0.20 6X ALTERNATIVE LAND PATTERN FOR UNIVERSAL APPLICATION - (0.05) 6X 5X 0.30±0.05 0.60 4 0.10(M) C B A 0.35 (0.08) .05 C 4X 0.35±0.050 BOTTOM VIEW NOTES: A. COMPLIES TO JEDEC MO-252 STANDARD **B. DIMENSIONS ARE IN MILLIMETERS.** C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009 0.075X45° DETAIL A CHAMFER PIN 1 LEAD SCALE: 2X

DESCRIPTION: UDEN6 1 0X1 0 0 35P PAGE 1 OF 1	
DESCRIPTION UDENG 1 0X1 0 0 35P PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>