

Linear Vibrator Driver

CMOS LSI

LC898302AXA

Overview

LC898302AXA is a LRA (Linear Resonant Actuator) & ERM (Eccentric Rotating Mass) Driver IC dedicated to haptic feedback actuator and vibrator employed in mobile equipment. Due to the product superior technology, the drive frequency is automatically adjusted to the resonance frequency of the linear vibrator without the use of other external parts. As a result of this very effective drive, the vibration is as powerful as possible using very limited amount of energy compared to classical solutions

The drive and brake are fully configurable through the PWM-IF setting.

Finally, the original driving waveform allows you to reduce power consumption and it is useful to maintain battery lifetime.

Features

- Automatic Adjustment to the Resonance Frequency for LRA
- Automatic Braking (EN Mode Only)
- Adjustable Drive Voltage Through PWM-IF Setting
- Adjustable Brake Voltage Through PWM-IF Setting
- EN/PWM-IF Driving Mode Available by Automatic Detection
- Low Standby Current
- Low Power Consumption Thanks to the Highly Effective Drive
- Low Driving Noise (EMI, Audible Band)
- Thermal Shutdown Protection
- Available to Drive a LRA or ERM
- VBAT Compliant
- This is a Pb-Free and Halogen Free Device

Applications

- Mobile Phone
- Portable Game
- Mobile Equipment with Haptics Function

MARKING DIAGRAM

o ₃₀₂ YZZ

302 = Specific Device Code

Y = YearZZ = Lot Code

ORDERING INFORMATION

Device	Package	Shipping [†]
LC898302AXA-MH	WLCSP6, 0.78 x 1.18	5000 / Tape & Reel
EOP m	(Pb–Free / Halogen Free)	

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

BLOCK DIAGRAM



Figure 1. Block Diagram

ABSOLUTE MAXIMUM RATINGS $(V_{SS} = 0 V)$

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage Range	V _{DD} max	1000	-0.3 to 6.0	V
Input Voltage	V _{I1}	(Note 1)	-0.3 to V _{DD} + 0.3	V
H-bridge Drive Current	I _O max	Min. 10 Mes	200	mA
Allowable Power Dissipation	Pd max	Ta = 85°C (Note 2)	116	mW
Operating Temperature Range	Ta	KRCO,	-30 to 85	°C
Storage Temperature Range	Tstsg		-55 to 125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. PWM, MODE pin
- 2. Glass epoxy (50 mm x 40 mm, t = 0.9 mm, FR-4)

RECOMMENDED OPERATING CONDITIONS (Ta = -30 to 85°C, $V_{CC} = 0$ V)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage Range	V_{DD}		2.7	ı	4.5	V
Input Voltage Range	V _{IN} 1	(Note 3)	0	-	V_{DD}	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

3. MODE, PWM pin

ELECTRIC CHARACTERISTICS

DC CHARACTERISTICS ($V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 4.5 \text{ V}, \text{ Ta} = -30 \text{ to } 85^{\circ}\text{C}$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	Applicable Pin
High Level Input Voltage	V_{IH}	CMOS	1.40	_	-	V	PWM
Low Level Input Voltage	V_{IL}		_	_	0.36	V	
High Level Input Voltage	V_{IH}	CMOS	0.7 V _{DD}	-	-	V	MODE
Low Level Input Voltage	V_{IL}		_	_	0.3 V _{DD}	V	
Input Leakage Current	I _{IL}	$V_I = V_{DD}, V_{SS}$	-10	-	+10	μΑ	PWM, MODE

AC INPUT CHARACTERISTICS ($V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 4.5 \text{ V}, \text{ Ta} = -30 \text{ to } 85^{\circ}\text{C}$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input PWM Frequency	I _{frq}	1% < PWM Duty < 99% (Note 4)	10.0	-	50.0	kHz

^{4.} PWM carrier frequency must be set to 128 times of resonant frequency in case of LRA mode.

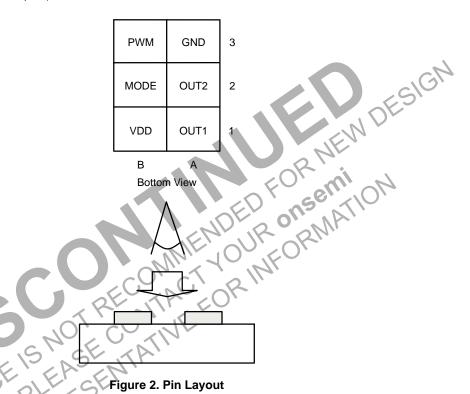
STANDBY CURRENT ($V_{SS} = 0 \text{ V}, V_{DD} = 3.7 \text{ V}, \text{Ta} = 25^{\circ}\text{C}$)

Parameter	Symbol	Condition	Min Typ	Max	Unit
Stand-by Current	Pstb	PWM = "0"	- 1.0	3.0	μΑ
Idle Current	Pidle	PWM = Duty 50%	2.5	-	mA

ANALOG CHARACTERISTICS ($V_{SS} = 0 \text{ V}, V_{DD} = 3.7 \text{ V}, \text{ Ta} = 25 ^{\circ}\text{C}$)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Voltage Difference OUT1 and OUT2	V _{OUT12}	MODE = "0" Input PWM Duty = 99%	JFO	2.8	ı	Vpp
		MODE = "1" Input PWM Duty = 99%	-	2.9	ı	Vpp
H-Bridge ON Resistance Pch	Ronp	I _F = 100 mA	-	2.5	-	Ω
H–Bridge ON Resistance Nch	Ronn	I _S = 100 mA	-	1.0	-	Ω
Adjustable Resonance Frequency Range	Fmo	vs input value	-10	-	+10	%

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


PIN ASSIGNMENT

PIN LIST

No	Name	I/O	No	Name	I/O
1A	OUT1	0	1B	VDD	Р
2A	OUT2	0	2B	MODE	I
3A	GND	Р	3B	PWM	I

NOTE: $I/O \rightarrow I$: input, O: output, B: bi-direction, P: power supply, NC: not connected

Pin Layout (PKG: WLCSP6, 0.4 mm pitch)

PIN DESCRIPTION

Signal Name	I/O	Function	Remarks
OUT1	0	Motor drive pin	H-bridge output
OUT2	0	Motor drive pin	H-bridge output
MODE	I	Motor select pin	L: LRA, H: ERM
PWM	I	Driving control pin	EN control or PWM control input
VDD	Р	Power supply pin	
VSS	Р	GND pin	

NOTE: $I/O \rightarrow I$: input, O: output, B: bi-direction, P: power supply, NC: not connected

AC CHARACTERISTICS

AC CHARACTERISTICS (V_{DD}) ($V_{SS} = 0$ V, $V_{DD} = 2.7$ to 4.5 V, Ta = -30 to 85°C)

Parameter		Min	Тур	Max	Unit
V _{DD} Rising Time	T _{VDDUP}	-	-	100	kHz

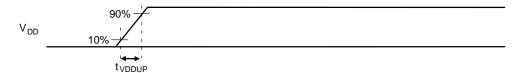
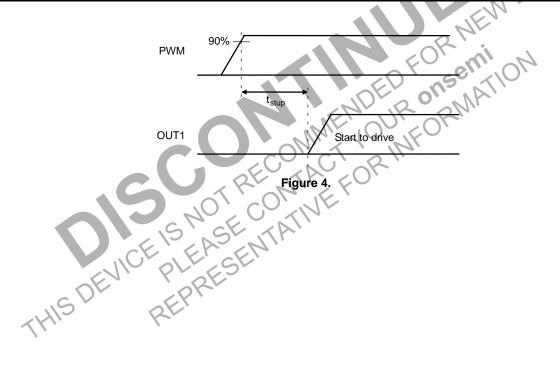



Figure 3.

AC CHARACTERISTICS (POWER ON RESET) ($V_{SS} = 0 \text{ V}, V_{DD} = 2.7 \text{ to } 4.5 \text{ V}, \text{ Ta} = -30^{\circ}\text{C to } +85^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Start Up Time	t _{stup}		0.55	-	μs

APPLICATION INFORMATION

LRA Mode

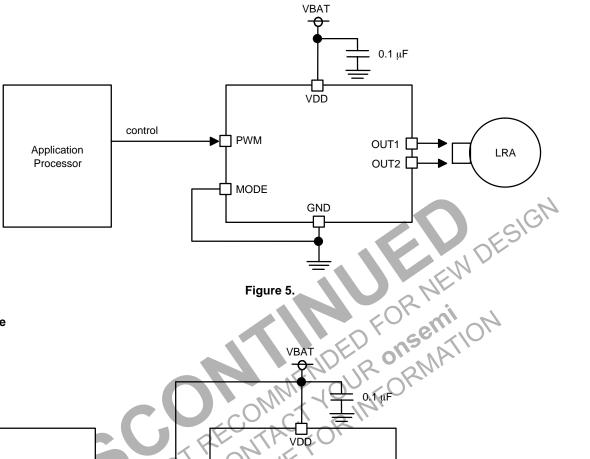
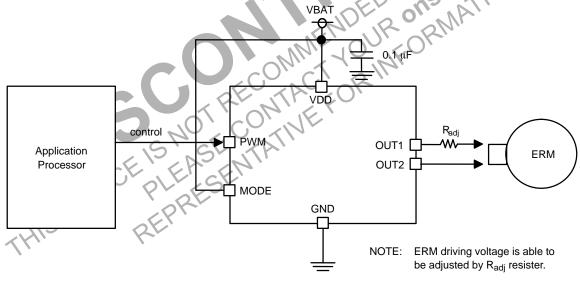
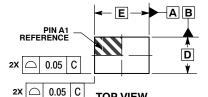
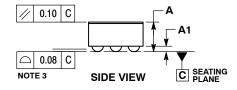


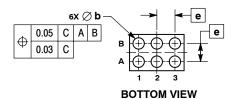
Figure 5.

ERM Mode

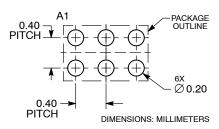



Figure 6.




WLCSP6, 0.78x1.18 CASE 567KP ISSUE O

DATE 24 SEP 2014


TOP VIEW

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS			
DIM	MIN	MAX		
Α		0.65		
A1	0.07	0.17		
b	0.15	0.25		
D	0.78	BSC		
Е	1.18	1.18 BSC		
е	0.40	BSC		

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON91308F	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WLCSP6, 0.78X1.18		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales