Surface Mount Schottky Power Rectifier **POWERMITE**® **Power Surface Mount Package** ## MBRM120LT1G, NRVBM120LT1G, MBRM120LT3G, NRVBM120LT3G The Schottky POWERMITE® employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the POWERMITE® has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC-DC and DC-DC converters, reverse battery protection, and "ORing" of multiple supply voltages and any other application where performance and size are critical. #### **Features** - Low Profile-Maximum Height of 1.1 mm - Small Footprint-Footprint Area of 8.45 mm² - Low V_F Provides Higher Efficiency and Extends Battery Life - Supplied in 12 mm Tape and Reel - Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink - ESD Ratings: - ♦ Human Body Model = 3B (> 16 kV) - ♦ Machine Model = C (> 400 V) - AEC-Q101 Qualified and PPAP Capable - NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements - All Packages are Pb-Free* #### **Mechanical Characteristics:** - POWERMITE® is JEDEC Registered as D0-216AA - Case: Molded Epoxy - Epoxy Meets UL 94 V-0 @ 0.125 in - Weight: 16.3 mg (Approximately) - Lead and Mounting Surface Temperature for Soldering Purposes: 260 °C Maximum for 10 Seconds *For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u> # SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES, 20 VOLTS POWERMITE CASE 457 PLASTIC ## **MARKING DIAGRAM** M = Date Code BCF = Device Code ■ = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|------------------------|-------------------------| | MBRM120LT1G | POWERMITE
(Pb-Free) | 3,000 /
Tape & Reel | | NRVBM120LT1G | POWERMITE
(Pb-Free) | 3,000 /
Tape & Reel | | MBRM120LT3G | POWERMITE
(Pb-Free) | 12,000 /
Tape & Reel | #### **DISCONTINUED** (Note 1) | NRVBM120LT3G | POWERMITE | 12,000 / | |--------------|-----------|-------------| | | (Pb-Free) | Tape & Reel | - † For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. - DISCONTINUED: This device is not available. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com. ## **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|--|------------|------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 20 | V | | Average Rectified Forward Current (At Rated V _R , T _C = 135°C) | Io | 1.0 | А | | Peak Repetitive Forward Current
(At Rated V _R , Square Wave, 100 kHz, T _C = 135°C) | I _{FRM} | 2.0 | А | | Non-Repetitive Peak Surge Current
(Non-Repetitive peak surge current, halfwave, single phase, 60 Hz) | I _{FSM} | 50 | А | | Storage Temperature | T _{stg} | -55 to 150 | °C | | Operating Junction Temperature | T _J | -55 to 125 | °C | | Voltage Rate of Change
(Rated V _R , T _J = 25 °C) | dv/dt | 10,000 | V/µs | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ## THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---|--|-----------------|------| | Thermal Resistance, Junction-to-Lead (Anode) (Note 1) Thermal Resistance, Junction-to-Tab (Cathode) (Note 1) Thermal Resistance, Junction-to-Ambient (Note 1) | R _{tjl}
R _{tjtab}
R _{tja} | 35
23
277 | °C/W | ^{1.} Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10. ## **ELECTRICAL CHARACTERISTICS** | Characteristic | Symbol | Va | lue | Unit | |---|----------------|-----------------------|-----------------------|------| | Maximum Instantaneous Forward Voltage (Note 2), See Figure 2 | V_{F} | T _J = 25°C | T _J = 85°C | V | | $(I_F = 0.1 \text{ A})$
$(I_F = 1.0 \text{ A})$
$(I_F = 3.0 \text{ A})$ | | 0.34
0.45
0.65 | 0.26
0.415
0.67 | | | Maximum Instantaneous Reverse Current (Note 2), See Figure 4 | I _R | T _J = 25°C | T _J = 85°C | mA | | $(V_R = 20 \text{ V})$
$(V_R = 10 \text{ V})$ | | 0.40
0.10 | 25
18 | | ^{2.} Pulse Test: Pulse Width \leq 250 μ s, Duty Cycle \leq 2%. Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage **Figure 3. Typical Reverse Current** Figure 4. Maximum Reverse Current 20 **Figure 6. Forward Power Dissipation** ^{*} Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where r(t) = thermal impedance under given conditions, Pf = forward power dissipation, and Pr = reverse power dissipation This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed. Figure 9. Thermal Response Junction to Lead Figure 10. Thermal Response Junction to Ambient ## **REVISION HISTORY** | Revision | Description of Changes | Date | |----------|--|----------| | 8 | NRVBM120LT3G OPN Marked as Discontinued + Rebranded the Data Sheet to onsemi format | 7/4/2025 | This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates. ## POWERMITE 1.90x1.96x1.00 **CASE 457 ISSUE H** **DATE 16 MAY 2025** ## +0.635 RECOMMENDED MOUNTING FOOTPRINT *For additional information on our Pb—Free Strategy and Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **GENERIC MARKING DIAGRAMS*** BOTTOM VIEW | MILLIMETERS | | | | | | |-------------|------|----------|------|--|--| | DIM | MIN | NOM | MAX | | | | А | 0.85 | 1.00 | 1.15 | | | | A1 | 0.00 | 0.05 | 0.10 | | | | b | 0.40 | 0.55 | 0.69 | | | | b1 | 0.70 | 0.85 | 1.00 | | | | С | 0.10 | 0.18 | 0.25 | | | | D | 1.75 | 1.90 | 2.05 | | | | Е | 1.75 | 1.96 | 2.18 | | | | Н | 3.60 | 3.75 | 3.90 | | | | L | 1.20 | 1.35 | 1.50 | | | | L1 | 0.50 | 0.65 | 0.80 | | | | L2 | | 0.50 REF | | | | #### NOTES: - DIMENSIONING AND TOLERANCING AS PER - ASME Y14.5M, 2018. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. (BI-DIRECTIONAL) PIN 1. ANODE OR CATHODE 2. CATHODE OR ANODE STYLE 2: *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98ASB14853C | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------------|--|-------------|--| | DESCRIPTION: | POWERMITE 1.90x1.96x1.00 | | PAGE 1 OF 1 | | onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. STYLE 3: PIN 1. ANODE 2. CATHODE onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales