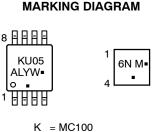
DUSEUI

2.5 V/3.3 V ECL 2-Input **Differential AND/NAND** MC100LVEP05

Description

The MC100LVEP05 is a 2-input differential AND/NAND gate. The MC100LVEP05 is the low voltage version of the MC100EP05 and is functionally equivalent to the EL05 and LVEL05 devices. With AC performance much faster than the LVEL05 device, the MC100LVEP05 is ideal for low voltage applications requiring the fastest AC performance available.

The 100 Series contains temperature compensation.


Features

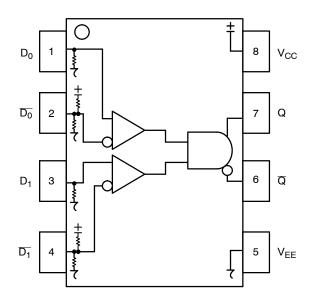
- 220 ps Typical Propagation Delay
- Input Clock Frequency > 3 GHz
- 0.2 ps Typical RMS Random Clock Period Jitter
- LVPECL Mode Operating Range: V_{CC} = 2.375 V to 3.6 V with $V_{EE} = 0 V$
- NECL Mode Operating Range: V_{CC} = 0 V with $V_{EE} = -2.375$ V to -3.6 V
- Open Input Default State
- Q Output Will Default LOW with Inputs Open
- These Device are Pb-Free, Halogen Free and are RoHS Compliant

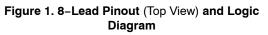
TSSOP-8 DT SUFFIX CASE 948R

DFN8 **MN SUFFIX** CASE 506AA

- M = Date Code A = Assembly Location
 - = Wafer Lot
- 1 = Year Υ
- W = Work Week
- = Pb-Free Package

(Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D.


ORDERING INFORMATION


Device	Package	Shipping [†]
MC100LVEP05DTG	TSSOP-8 (Pb-Free)	100 Units / Tube
MC100LVEP05DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100LVEP05MNTXG	DFN8 (Pb-Free)	1000 / Tape & Reel

†For information on tape and reel specifications,

including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

Table 1. PIN DESCRIPTION

Pin	Function
D0*, D1*, <u>D0</u> **, <u>D1</u> **	ECL Data Inputs
Q, <u>Q</u>	ECL Data Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

* Pins will default LOW when left open. ** Pins will default to $V_{CC}/2$ when left open.

Table 2. TRUTH TABLE

I	D0	D1	DO	D1	q	Q
	ТТГ	ГТТ	H H L L	H L H L	L L H	ΗΗΗL

Table 3. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	37.5 kΩ
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) TSSOP-8 DFN8	Pb-Free Pkg Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in
Transistor Count	167 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W
T _{sol}	Wave Solder	3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 5. 100EP DC CHARACTERISTICS, PECL V_{CC} = 2.5 V, V_{EE} = 0 V (Note 3)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	15	25	32	17	27	36	19	28	38	mA
V _{OH}	Output HIGH Voltage (Note 4)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 4)	555	730	900	555	730	900	555	730	900	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	1355		1620	1355		1620	1355		1620	mV
V _{IL}	Input LOW Voltage (Single-Ended)	555		900	555		900	555		900	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Notes 5, 6)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current D	0.5 -150			0.5 -150			0.5 -150			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to -1.3 V.

4. All loading with 50 Ω to V_{CC} – 2.0 V. 5. Single–ended input CLK pin operation is limited to V_{CC} ≥[3.0 V in PECL mode. 6. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

-40°C 25°C 85°C Symbol Characteristic Min Max Min Max Min Max Unit Тур Тур Тур IEE Power Supply Current 15 25 32 17 27 36 19 28 38 mΑ Output HIGH Voltage (Note 8) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOH Output LOW Voltage (Note 8) 1355 1530 1700 1355 1530 1700 1355 1530 1700 mV VOL V_{IH} Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VIHCMR V Input HIGH Voltage Common Mode 1.2 3.3 1.2 3.3 1.2 3.3 Range (Differential Configuration) (Note 9) Input HIGH Current Ι_Η 150 150 150 μA $I_{|L}$ Input LOW Current D 0.5 0.5 0.5 μΑ D -150 -150 -150

Table 6. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 7)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.

8. All loading with 50 Ω to V_{CC} – 2.0 V.

9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 7. 100EP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -2.375 V to -3.6 V (Note 10)

			–40°C 25°C			85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	15	25	32	17	27	36	19	28	38	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1945	-1770	-1600	-1945	-1770	-1600	-1945	-1770	-1600	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1945		-1600	-1945		-1600	-1945		-1600	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

10. Input and output parameters vary 1:1 with V_{CC}. 11. All loading with 50 Ω to V_{CC} – 2.0 V. 12. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)	3.0			3.0			3.0			GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	160	210	260	170	220	270	210	260	320	ps
t _{JITTER}	RMS Random Clock Jitter $f_{in} \leq 3.0 \text{ GHz}$ (Figure 2)		0.2	1		0.2	1		0.2	1.5	ps
V_{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	70	120	170	80	130	180	100	150	200	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

13. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V.

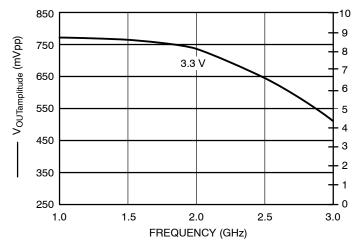
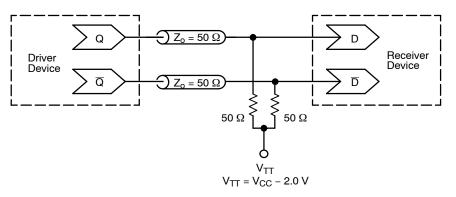
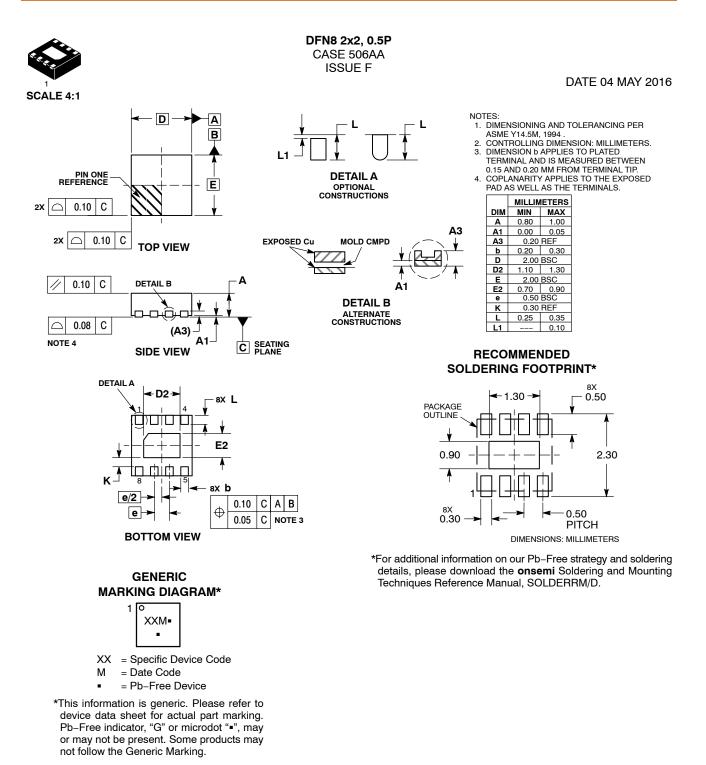



Figure 2. F_{max} @ 25°C



Resource Reference of Application Notes

- AN1405/D-ECL Clock Distribution TechniquesAN1406/D-Designing with PECL (ECL at +5.0 V)AN1503/D-ECLinPS ™ I/O SPiCE Modeling KitAN1504/D-Metastability and the ECLinPS FamilyAN1568/D-Interfacing Between LVDS and ECLAN1672/D-The ECL Translator GuideAND8001/D-Odd Number Counters DesignAND8002/D-Marking and Date Codes
- AND8020/D Termination of ECL Logic Devices
- AND8066/D Interfacing with ECLinPS
- AND8090/D AC Characteristics of ECL Devices

ECLinPS is registered trademark of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi

DOCUMENT NUMBER:	98AON18658D Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.							
DESCRIPTION:	DFN8, 2.0X2.0, 0.5MM PITC	PAGE 1 OF 1						
		LLC dba onsemi or its subsidiaries in the United States and/or other cour						

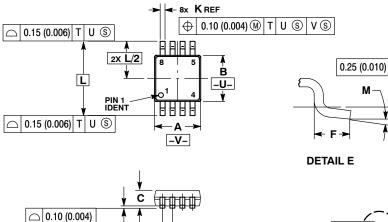
are not designed in a second s

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2016

semi

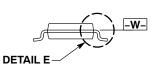
-T- SEATING


PLANE

D

TSSOP-8 3.00x3.00x0.95 CASE 948R-02 ISSUE A

DATE 07 APR 2000


0.25 (0.010)

NOTES:

4.

5.

PER SIDE.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	2.90	3.10	0.114	0.122		
В	2.90	3.10	0.114	0.122		
С	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65	BSC	0.026	BSC		
K	0.25	0.40	0.010	0.016		
L	4.90	BSC	0.193 BSC			
М	0°	6 °	0 °	6 °		

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLED

FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)

TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSSOP-8 3.00x3.00x0.95		PAGE 1 OF 1				

onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make charges without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>