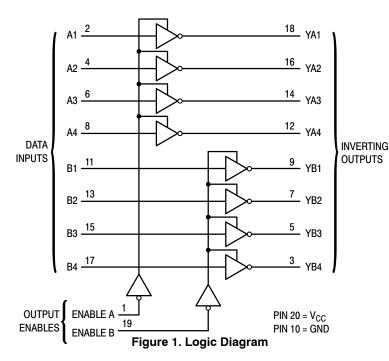
# onsemi

### Octal 3-State Inverting Buffer/Line Driver/Line Receiver

# High-Performance Silicon-Gate CMOS **MC74HC240A**


The MC74HC240A is identical in pinout to the LS240. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This octal noninverting buffer/line driver/line receiver is designed to be used with 3-state memory address drivers, clock drivers, and other sub-oriented systems. The device has inverting outputs and two active-low output enables.

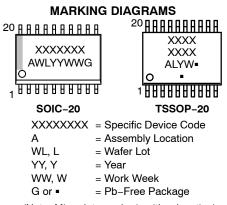
The HC240A is similar in function to the HC244A.

#### Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 120 FETs or 30 Equivalent Gates
- -Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant






SOIC-20 DW SUFFIX CASE 751D



DT SUFFIX CASE 948E

|     |      | ~  |      |
|-----|------|----|------|
| PIN | ASSI | GN | MENT |

| ENABLE A | ۵ | 1• | 20 | þ | V <sub>CC</sub> |
|----------|---|----|----|---|-----------------|
| A1       | ۵ | 2  | 19 | ם | ENABLE B        |
| YB4      | q | 3  | 18 | ב | YA1             |
| A2       | þ | 4  | 17 | ם | B4              |
| YB3      | ۵ | 5  | 16 |   | YA2             |
| A3       | E | 6  | 15 | þ | B3              |
| YB2      | q | 7  | 14 | þ | YA3             |
| A4       | þ | 8  | 13 | ב | B2              |
| YB1      | þ | 9  | 12 | ם | YA4             |
| GND      | ۵ | 10 | 11 | þ | B1              |
|          |   |    |    |   |                 |



(Note: Microdot may be in either location)

| FUNCTION TABLE        |        |        |  |  |  |  |
|-----------------------|--------|--------|--|--|--|--|
| Inputs Outputs        |        |        |  |  |  |  |
| Enable A,<br>Enable B | А, В   | YA, YB |  |  |  |  |
| L                     | L      | Н      |  |  |  |  |
| L                     | Н      | L      |  |  |  |  |
| Н                     | Х      | Z      |  |  |  |  |
| Z = high imp          | edance | •      |  |  |  |  |

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 6 of this data sheet.

#### **MAXIMUM RATINGS**

| Symbol           | Parameter                                                                       |                        | Value                        | Unit |
|------------------|---------------------------------------------------------------------------------|------------------------|------------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage                                                               |                        | –0.5 to +6.5                 | V    |
| V <sub>IN</sub>  | DC Input Voltage                                                                |                        | –0.5 to V <sub>CC</sub> +0.5 | V    |
| V <sub>OUT</sub> | DC Output Voltage                                                               |                        | –0.5 to V <sub>CC</sub> +0.5 | V    |
| I <sub>IN</sub>  | DC Input Diode Current, per Pin                                                 |                        | ±20                          | mA   |
| I <sub>OUT</sub> | DC Input Diode Current, Per Pin                                                 |                        | ±35                          | mA   |
| I <sub>CC</sub>  | DC Supply Current, V <sub>CC</sub> and GND Pins                                 |                        | ±75                          | mA   |
| I <sub>IK</sub>  | Input Clamp Current (V <sub>IN</sub> < 0 or V <sub>IN</sub> > V <sub>CC</sub> ) |                        | ±20                          | mA   |
| I <sub>OK</sub>  | Output Clamp Current ( $V_{OUT} < 0$ or $V_{OUT} > V_{CC}$ )                    |                        | ±20                          | mA   |
| T <sub>STG</sub> | Storage Temperature Range                                                       |                        | –65 to +150                  | °C   |
| ΤL               | Lead Temperature, 1 mm from Case for 10 secs                                    |                        | 260                          | °C   |
| TJ               | Junction Temperature Under Bias                                                 |                        | +150                         | °C   |
| $\theta_{JA}$    | Thermal Resistance (Note 1) SOIC-20W                                            |                        | 96                           | °C/W |
|                  |                                                                                 | WQFN20                 | 99                           |      |
|                  |                                                                                 | QFN20                  | 111                          |      |
|                  |                                                                                 | TSSOP-20               | 150                          |      |
| PD               | Power Dissipation in Still Air at 25°C                                          | SOIC-20W               | 1302                         | mW   |
|                  |                                                                                 | WQFN20                 | 1256                         |      |
|                  |                                                                                 | QFN20                  | 1127                         |      |
|                  |                                                                                 | TSSOP-20               | 833                          |      |
| MSL              | Moisture Sensitivity                                                            | SOIC-20W               | Level 3                      | -    |
|                  |                                                                                 | All Other Packages     | Level 1                      |      |
| F <sub>R</sub>   | Flammability Rating                                                             | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in         | -    |
| V <sub>ESD</sub> | ESD Withstand Voltage (Note 2)                                                  | Human Body Model       | > 2000                       | V    |
|                  |                                                                                 | Charged Device Model   | > 1000                       |      |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.

2. Tested to EIA/JESD78 Class II.

#### **RECOMMENDED OPERATING CONDITIONS**

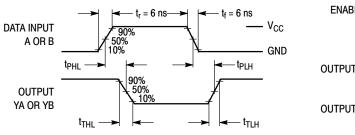
| Symbol                             | Parameter                                            | Min         | Max                | Unit |
|------------------------------------|------------------------------------------------------|-------------|--------------------|------|
| V <sub>CC</sub>                    | DC Supply Voltage (Referenced to GND)                | 2.0         | 6.0                | V    |
| V <sub>in</sub> , V <sub>out</sub> | DC Input Voltage, Output Voltage (Referenced to GND) | 0           | V <sub>CC</sub>    | V    |
| T <sub>A</sub>                     | Operating Temperature, All Package Types             | -55         | +125               | °C   |
| t <sub>r</sub> , t <sub>f</sub>    |                                                      | 0<br>0<br>0 | 1000<br>500<br>400 | ns   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 3. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

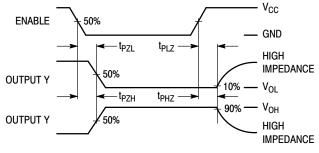
#### DC ELECTRICAL CHARACTERISTICS

|                 |                                                     |                                                                                                                                                                         |                          | Gu                        | Guaranteed Limit          |                           |      |
|-----------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|------|
| Symbol          | Parameter                                           | Test Conditions                                                                                                                                                         | V <sub>CC</sub><br>V     | –55 to<br>25°C            | ≤ <b>85°C</b>             | ≤ 125°C                   | Unit |
| V <sub>IH</sub> | Minimum High-Level Input Voltage                    | $V_{out} = V_{CC} - 0.1 V$<br>$ I_{out}  \le 20 \ \mu A$                                                                                                                | 2.0<br>3.0<br>4.5<br>6.0 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | 1.5<br>2.1<br>3.15<br>4.2 | V    |
| V <sub>IL</sub> | Maximum Low-Level Input Voltage                     | $V_{out} = 0.1 V$<br>$ I_{out}  \le 20 \mu A$                                                                                                                           | 2.0<br>3.0<br>4.5<br>6.0 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | 0.5<br>0.9<br>1.35<br>1.8 | V    |
| V <sub>OH</sub> | Minimum High–Level Output<br>Voltage                | $V_{in} = V_{IH}$<br>$ I_{out}  \le 20 \ \mu A$                                                                                                                         | 2.0<br>4.5<br>6.0        | 1.9<br>4.4<br>5.9         | 1.9<br>4.4<br>5.9         | 1.9<br>4.4<br>5.9         | V    |
|                 |                                                     | $ \begin{array}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                 | 3.0<br>4.5<br>6.0        | 2.48<br>3.98<br>5.48      | 2.34<br>3.84<br>5.34      | 2.2<br>3.7<br>5.2         |      |
| V <sub>OL</sub> | Maximum Low–Level Output<br>Voltage                 | $V_{in} = V_{IL}$<br>$ I_{out}  \le 20 \ \mu A$                                                                                                                         | 2.0<br>4.5<br>6.0        | 0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1         | 0.1<br>0.1<br>0.1         | V    |
|                 |                                                     | $ \begin{array}{ll} V_{in} = V_{IL} & \begin{array}{ll} I_{out} \\ I_{out} \\ I_{out} \\ I_{out} \\ \leq 6.0 \text{ mA} \\ I_{out} \\ \leq 7.8 \text{ mA} \end{array} $ | 3.0<br>4.5<br>6.0        | 0.26<br>0.26<br>0.26      | 0.33<br>0.33<br>0.33      | 0.4<br>0.4<br>0.4         |      |
| l <sub>in</sub> | Maximum Input Leakage Current                       | V <sub>in</sub> = V <sub>CC</sub> or GND                                                                                                                                | 6.0                      | ±0.1                      | ±1.0                      | ±1.0                      | μA   |
| I <sub>OZ</sub> | Maximum Three-State Leakage<br>Current              | $\begin{array}{l} Output \text{ in High-Impedance State} \\ V_{in} = V_{IL} \text{ or } V_{IH} \\ V_{out} = V_{CC} \text{ or GND} \end{array}$                          | 6.0                      | ±0.5                      | ±5.0                      | ±10                       | μΑ   |
| I <sub>CC</sub> | Maximum Quiescent Supply Cur-<br>rent (per Package) | $V_{in} = V_{CC}$ or GND<br>$I_{out} = 0 \ \mu A$                                                                                                                       | 6.0                      | 4.0                       | 40                        | 160                       | μΑ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


#### AC ELECTRICAL CHARACTERISTICS

|                                        |                                                                            |                          | Gu                    | aranteed Li           | mit                   |      |
|----------------------------------------|----------------------------------------------------------------------------|--------------------------|-----------------------|-----------------------|-----------------------|------|
| Symbol                                 | Parameter                                                                  | V <sub>CC</sub><br>V     | –55 to<br>25°C        | ≤ <b>85°C</b>         | ≤ 125°C               | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, A to YA or B to YB<br>(Figures 1 and 3)         | 2.0<br>3.0<br>4.5<br>6.0 | 80<br>40<br>16<br>14  | 100<br>50<br>20<br>17 | 120<br>60<br>24<br>20 | ns   |
| t <sub>PLZ</sub> ,<br>t <sub>PHZ</sub> | Maximum Propagation Delay, Output Enable to YA or YB<br>(Figures 2 and 4)  | 2.0<br>3.0<br>4.5<br>6.0 | 110<br>60<br>22<br>19 | 140<br>70<br>28<br>24 | 165<br>80<br>33<br>28 | ns   |
| t <sub>PZL</sub> ,<br>t <sub>PZH</sub> | Maximum Propagation Delay, Output Enable to YA or YB (Figures 2 and 4)     | 2.0<br>3.0<br>4.5<br>6.0 | 110<br>60<br>22<br>19 | 140<br>70<br>28<br>24 | 165<br>80<br>33<br>28 | ns   |
| t <sub>TLH</sub> ,<br>t <sub>THL</sub> | Maximum Output Transition Time, Any Output<br>(Figures 1 and 3)            | 2.0<br>3.0<br>4.5<br>6.0 | 60<br>23<br>12<br>10  | 75<br>27<br>15<br>13  | 90<br>32<br>18<br>15  | ns   |
| C <sub>in</sub>                        | Maximum Input Capacitance                                                  | -                        | 10                    | 10                    | 10                    | pF   |
| C <sub>out</sub>                       | Maximum Three-State Output Capacitance<br>(Output in High-Impedance State) | -                        | 15                    | 15                    | 15                    | pF   |


|                 |                                                          | Typical @ 25°C, V <sub>CC</sub> = 5.0 V |    |
|-----------------|----------------------------------------------------------|-----------------------------------------|----|
| C <sub>PD</sub> | Power Dissipation Capacitance (Per Transceiver Channel)* | 32                                      | pF |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. \*Used to determine the no-load dynamic power consumption:  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ .

#### SWITCHING WAVEFORMS









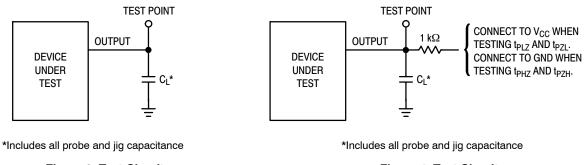



Figure 3. Test Circuit

```
Figure 4. Test Circuit
```

#### **PIN DESCRIPTIONS**

#### INPUTS

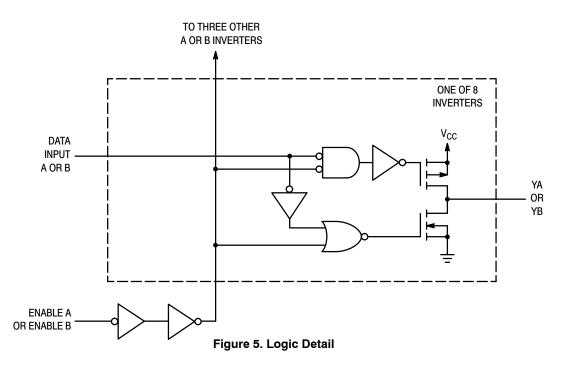
#### A1, A2, A3, A4, B1, B2, B3, B4

(Pins 2, 4, 6, 8, 11, 13, 15, 17)

Data input pins. Data on these pins appear in inverted form on the corresponding Y outputs, when the outputs are enabled.

#### CONTROLS

#### Enable A, Enable B (Pins 1, 19)


Output enables (active-low). When a low level is applied to these pins, the outputs are enabled and the devices

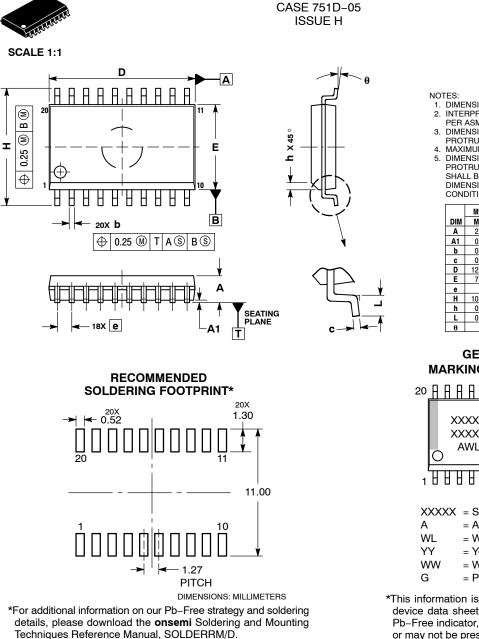
function as inverters. When a high level is applied, the outputs assume the high-impedance state.

#### OUTPUTS

#### YA1, YA2, YA3, YA4, YB1, YB2, YB3, YB4 (Pins 18, 16, 14, 12, 9, 7, 5, 3)

Device outputs. Depending upon the state of the output–enable pins, these outputs are either inverting outputs or high–impedance outputs.




#### **ORDERING INFORMATION**

| Device             | Marking    | Package      | Shipping <sup>†</sup> |
|--------------------|------------|--------------|-----------------------|
| MC74HC240ADWG      | HC240A     | SOIC-20 Wide | 38 Units / Rail       |
| MC74HC240ADWR2G    | HC240A     | SOIC-20 Wide | 1000 / Tape & Reel    |
| MC74HC240ADWR2G-Q* | HC240A     | SOIC-20 Wide | 1000 / Tape & Reel    |
| MC74HC240ADTG      | HC<br>240A | TSSOP-20     | 75 Units / Rail       |
| MC74HC240ADTR2G    | HC<br>240A | TSSOP-20     | 2500 / Tape & Reel    |
| MC74HC240ADTR2G-Q* | HC<br>240A | TSSOP-20     | 2500 / Tape & Reel    |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

\*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

## semi



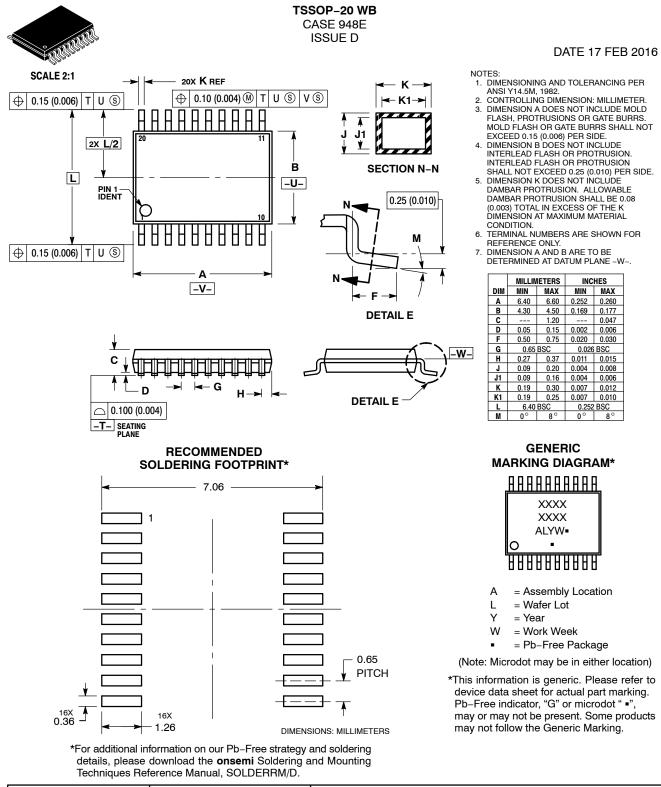
SOIC-20 WB

DATE 22 APR 2015

- NOTES:
  DIMENSIONS ARE IN MILLIMETERS.
  INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
  DIMENSIONS D AND E DO NOT INCLUDE MOLD
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIMETERS |       |  |  |  |
|-----|-------------|-------|--|--|--|
| DIM | MIN         | MAX   |  |  |  |
| Α   | 2.35        | 2.65  |  |  |  |
| A1  | 0.10        | 0.25  |  |  |  |
| b   | 0.35        | 0.49  |  |  |  |
| C   | 0.23        | 0.32  |  |  |  |
| D   | 12.65       | 12.95 |  |  |  |
| E   | 7.40        | 7.60  |  |  |  |
| е   | 1.27        | BSC   |  |  |  |
| н   | 10.05       | 10.55 |  |  |  |
| h   | 0.25        | 0.75  |  |  |  |
| L   | 0.50        | 0.90  |  |  |  |
| θ   | 0 °         | 7 °   |  |  |  |

GENERIC **MARKING DIAGRAM\*** 


| ХХХХХХХХХ<br>ХХХХХХХХХ<br>AWLYYWWG<br>О                                                                |
|--------------------------------------------------------------------------------------------------------|
|                                                                                                        |
|                                                                                                        |
| XXXXX = Specific Device Code<br>A = Assembly Location<br>WL = Wafer Lot<br>YY = Year<br>WW = Work Week |

= Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER:      98ASB42343B      Electronic versions are uncontrolled except when accessed directly from the Document Reposite<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| DESCRIPTION: SOIC-20 WB PAGE 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its pattent rights nor the rights of others. |  |  |  |  |  |  |





| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | TSSOP-20 WB |                                                                                                                                                                                     | PAGE 1 OF 1 |
|                  |             |                                                                                                                                                                                     |             |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent\_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>