Dual 4-Stage Binary Ripple Counter with $\div 2$ and $\div 5$ Sections
 High-Performance Silicon-Gate CMOS MC74HC390A

The MC74HC390A is identical in pinout to the LS390. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of two independent 4-bit counters, each composed of a divide-by-two and a divide-by-five section. The divide-by-two and divide-by-five counters have separate clock inputs, and can be cascaded to implement various combinations of $\div 2$ and/or $\div 5$ up to $\mathrm{a} \div 100$ counter.

Flip-flops internal to the counters are triggered by high-to-low transitions of the clock input. A separate, asynchronous reset is provided for each 4-bit counter. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or strobes except when gated with the Clock of the HC390A.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No 7 A
- Chip Complexity: 244 FETs or 61 Equivalent Gates
- -Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

PIN $16=V_{C C}$
PIN $8=$ GND

Figure 1. Logic Diagram

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or $\quad=\quad \mathrm{Pb}-$ Free Package
(Note: Microdot may be in either location)
PIN ASSIGNMENT

CLOCK Aa	$1 \bullet$] V_{CC}
RESET a	2	15] CLOCK A_{b}
$Q_{\text {Aa }}$	3	14] RESET b
CLOCK Ba_{a}	4	13	$Q_{\text {Ab }}$
Q_{Ba}	5	12	CLOCK B_{b}
$Q_{\text {Ca }}$	6	11	Q_{Bb}
$Q_{\text {Da }}$	7	10	- $Q_{C b}$
GND	8	9	$Q_{\text {Db }}$

FUNCTION TABLE

Clock		Reset	Action
A	B	Res	H
X	X	Reset $\div 2$ and $\div 5$	
L	X	L	Increment $\div 2$
X	L	L	Increment $\div 5$

ORDERING INFORMATION
See detailed ordering and shipping information on page 8 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	DC Supply Voltage		-0.5 to +6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIN	DC Input Current, per Pin		± 20	mA
Iout	DC Output Current, per Pin		± 25	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins		± 50	mA
$\mathrm{IIK}^{\text {I }}$	Input Clamp Current ($\mathrm{V}_{\mathrm{IN}}<0$ or $\left.\mathrm{V}_{\mathrm{IN}}>\mathrm{V}_{\mathrm{CC}}\right)$		± 20	mA
IOK	Output Clamp Current ($\mathrm{V}_{\text {OUT }}<0$ or $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}$)		± 20	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds		260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		± 150	${ }^{\circ} \mathrm{C}$
$\theta_{J A}$	Thermal Resistance (Note 1)	SOIC-16 QFN16 TSSOP-16	$\begin{aligned} & 126 \\ & 118 \\ & 159 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $25^{\circ} \mathrm{C}$	$\begin{array}{r} \text { SOIC-16 } \\ \text { QFN16 } \\ \text { TSSOP-16 } \end{array}$	$\begin{gathered} 995 \\ 1062 \\ 787 \end{gathered}$	mW
MSL	Moisture Sensitivity		Level 1	-
F_{R}	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	$\begin{gathered} >2000 \\ \text { N/A } \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 76 mm -by- $114 \mathrm{~mm}, 2$-ounce copper trace no air flow per JESD51-7.
2. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	6.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time		0	1000
		$\mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	ns	
	$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	600	
	$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	500	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
3. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.1 \\ & 3.15 \\ & 4.2 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.1 \\ & 3.15 \\ & 4.2 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
			$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
			$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{l}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 50 \end{aligned}$	$\begin{gathered} 9 \\ 14 \\ 28 \\ 45 \end{gathered}$	$\begin{gathered} 8 \\ 12 \\ 25 \\ 40 \end{gathered}$	MHz
$\begin{aligned} & \text { tpLH, } \\ & t_{\text {tpHL }} \end{aligned}$	Maximum Propagation Delay, Clock A to QA (Figures 2 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 36 \\ & 31 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pLLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Clock A to QC (QA connected to Clock B) (Figures 2 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 200 \\ & 160 \\ & 58 \\ & 49 \end{aligned}$	$\begin{aligned} & 250 \\ & 185 \\ & 65 \\ & 62 \end{aligned}$	$\begin{aligned} & 300 \\ & 210 \\ & 70 \\ & 68 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Clock B to QB (Figures 2 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 33 \\ & 28 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 39 \\ & 33 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Clock B to QC (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 90 \\ & 56 \\ & 37 \\ & 31 \end{aligned}$	$\begin{aligned} & 105 \\ & 70 \\ & 46 \\ & 39 \end{aligned}$	$\begin{gathered} 180 \\ 100 \\ 56 \\ 48 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Clock B to QD (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 33 \\ & 28 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 39 \\ & 33 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

	Parameter	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit
Symbol			$\begin{aligned} & -55 \text { to } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to any Q (Figures 2 and 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 48 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 95 \\ & 65 \\ & 38 \\ & 33 \end{aligned}$	$\begin{gathered} 110 \\ 75 \\ 44 \\ 39 \end{gathered}$	ns
$\begin{gathered} \mathrm{t}_{\mathrm{T} L \mathrm{LH}}, \\ \mathrm{t}_{\mathrm{TH}}, \end{gathered}$	Maximum Output Transition Time, Any Output (Figures 2 and 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 15 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{\mathbf { V } _ { \mathbf { C C } } = \mathbf { 5 . 0 } \mathbf { ~ V }}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Counter)*	35	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
${ }_{* U s e d}$ to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

TIMING REQUIREMENTS

	Parameter	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
Symbol			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Clock A or Clock B (Figure 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 25 \\ 15 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & 30 \\ & 20 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Clock A, Clock B (Figure 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 15 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 4)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 24 \\ & 22 \end{aligned}$	$\begin{aligned} & 110 \\ & 36 \\ & 30 \\ & 28 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{f}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 1000 \\ & 800 \\ & 500 \\ & 400 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

MC74HC390A

SWITCHING WAVEFORMS

Test	Switch Position	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Open	50 pF	$\mathrm{k} \Omega$
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	V_{CC}		
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND		

Figure 2.

Figure 3.

Figure 4.

MC74HC390A

PIN DESCRIPTIONS

INPUTS

Clock A (Pins 1, 15) and Clock B (Pins 4, 15)

Clock A is the clock input to the $\div 2$ counter; Clock B is the clock input to the $\div 5$ counter. The internal flip-flops are toggled by high-to-low transitions of the clock input.

CONTROL INPUTS

Reset (Pins 2, 14)

Asynchronous reset. A high at the Reset input prevents counting, resets the internal flip-flops, and forces Q_{A} through Q_{D} low.

OUTPUTS
\mathbf{Q}_{A} (Pins 3, 13)
Output of the $\div 2$ counter.
Q_{B}, Q_{C}, Q_{D} (Pins 5, 6, 7, 9, 10, 11)
Outputs of the $\div 5$ counter. Q_{D} is the most significant bit. Q_{A} is the least significant bit when the counter is connected for BCD output as in Figure 7. Q_{B} is the least significant bit when the counter is operating in the bi-quinary mode as in Figure 8.

Figure 5. Expanded Logic Diagram

Figure 6. Timing Diagram (\mathbf{Q}_{A} Connected to Clock B)

APPLICATIONS INFORMATION

Each half of the MC54/74HC390A has independent $\div 2$ and $\div 5$ sections (except for the Reset function). The $\div 2$ and $\div 5$ counters can be connected to give BCD or bi-quinary $(2-5)$ count sequences. If Output Q_{A} is connected to the Clock B input (Figure 4), a decade divider with BCD output is obtained. The function table for the BCD count sequence is given in Table 1.

Table 1. BCD COUNT SEQUENCE*

Count	Output			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

[^0]To obtain a bi-quinary count sequence, the input signals connected to the Clock B input, and output Q_{D} is connected to the Clock A input (Figure 8). Q_{A} provides a 50% duty cycle output. The bi-quinary count sequence function table is given in Table 2.

Table 2. BI-QUINARY COUNT SEQUENCE**

Count	Output			
	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L

${ }^{* *} Q_{D}$ connected to Clock A input.

MC74HC390A

CONNECTION DIAGRAMS

Figure 7. BCD Count

Figure 8. Bi-Quinary Count

ORDERING INFORMATION

Device	Marking	Package	Shipping †
MC74HC390ADG	HC390AG	SOIC-16	48 Units / Rail
MC74HC390ADR2G	HC390AG	SOIC-16	$2500 /$ Tape \& Reel
MC74HC390ADR2G-Q*	HC390AG	SOIC-16	$2500 /$ Tape \& Reel
MC74HC390ADTR2G	HC	TSSOP-16	$2500 /$ Tape \& Reel
	390A		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MC74HC390A

PACKAGE DIMENSIONS

SCALE 2:1

QFN16, 2.5x3.5, 0.5P
 CASE 485AW

ISSUE O
SCALE 2:1

DATE 11 DEC 2008

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

STYLE 1:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
4. NO CONNECTION
5. EMITTER
6. EMITT
7. COLLECTOR
8. COLLECTOR
9. BASE
10. EMITTER
11. NO CONNECTION
12. EMITTER
13. BASE
14. COLLECTOR
15. EMITTER
16. COLLECTOR

STYLE 5:
PIN 1. DRAIN, DYE \#1
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, \#2
4. DRAIN, \#2
5. DRAIN, \#3
6. DRAIN, \#3 6. CATHODE
7. DRAIN, \#4 7. CATHODE
8. DRAIN, \#4
9. GATE, \#4
10. SOURCE, \#4
11. GATE, \#3
12. SOURCE, \#3
12. SOURCE, \#3
13. GATE, \#2
14. SOURCE, \#2
15. GATE, \#1
16. SOURCE, \#1

STYLE 2:	
PIN 1.	CATHODE
2.	ANODE
3.	NO CONNECTION
4.	CATHODE
5.	CATHODE
6.	NO CONNECTION
7.	ANODE
8.	CATHODE
9.	CATHODE
10.	ANODE
11.	NO CONNECTION
12.	CATHODE
13.	CATHODE
14.	NO CONNECTION
15.	ANODE
16.	CATHODE

PIN 1. CATHODE

STYLE 3:
PIN 1. COLLECTOR DYE
2. BASE,\#1
3. EMITTER, \#1
4. COLLECTOR \#1

STYLE 4:
PIN 1. COLLECTOR, DYE \#1
2. COLLECTOR,\#1
3. COLLECTOR, \#2 4. COLLECTOR, \#2 4. COLLECTOR, \#2 5. COLLECTOR, \#3 6. COLLECTOR, \#3 7. COLLECTOR, \#4 9. BASE, \#4
10. EMITTER, \#4
11. BASE, \#3
11. BASE, \#3
12. EMITTER, \#3
12. EMITTER, \#
13. BASE, \#2
14. EMITTER, \#2 R RECOMMENDED
15. BASE, \#1
16. EMITTER, \#1 8X

STYLE 6: STYLE 7:
PIN 1.
IN 1. SOURCE N-CH
2. COMMON DRAIN (OUTPUT)
3. COMMON DRAIN (OUTPUT)
4. GATE P-CH
5. COMMON DRAIN (OUTPUT)
6. COMMON DRAIN (OUTPUT)
7. COMMON DRAIN (OUTPUT)
8. SOURCE P-CH
9. SOURCE P-CH
10. COMMON DRAIN (OUTPUT)
11. COMMON DRAIN (OUTPUT)
12. COMMON DRAIN (OUTPUT)
12. COMMON DR
13. GATE N-CH
14. COMMON DRAIN (OUTPUT)
14. COMMON DRAIN (OUTPUT)
15. COMMON DRAIN (OUTPUT)
16. SOURCE N-CH

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled exceppt when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16	PAGE 1 OF 1	

onsemi and Onsemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSSOP-16 WB
CASE 948F
ISSUE B
DATE 19 OCT 2006

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL in EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE - W -

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
c		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	SC	0.026	BSC
H	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BC	0.25	BSC
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*	
XXXX	= Specific Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
W	= Work Week
G or -	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^1]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: ${ }^{*} \mathrm{Q}_{\mathrm{A}}$ connected to Clock B input.

[^1]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

