onsemi

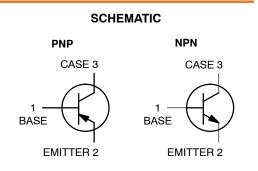
Silicon Power Transistors MJ21195G - PNP MJ21196G - NPN

The MJ21195G and MJ21196G utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

Features

- Total Harmonic Distortion Characterized
- High DC Current Gain
- Excellent Gain Linearity
- High SOA
- These Devices are Pb-Free and are RoHS Compliant*

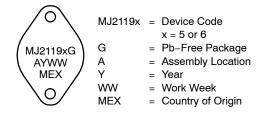
MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	400	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector-Emitter Voltage - 1.5V	V _{CEX}	400	Vdc
Collector Current – Continuous	۱ _C	16	Adc
Collector Current – Peak (Note 1)	I _{CM}	30	Adc
Base Current - Continuous	Ι _Β	5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	250 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.7	°C/W


16 AMPERES COMPLEMENTARY SILICON-POWER TRANSISTORS 250 VOLTS, 250 WATTS

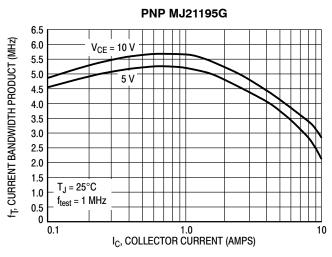
STYLE 1

MARKING DIAGRAM

ORDERING INFORMATION

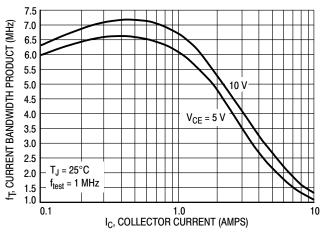
Device	Package	Shipping
MJ21195G	TO-204 (Pb-Free)	100 Units / Tray
MJ21196G	TO–204 (Pb–Free)	100 Units / Tray

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>


*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ21195G – PNP MJ21196G – NPN

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C \pm 5^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Typical	Мах	Unit
OFF CHARACTERISTICS		I.	1		
Collector–Emitter Sustaining Voltage $(I_C = 100 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	250	-	-	Vdc
Collector Cutoff Current ($V_{CE} = 200 \text{ Vdc}, I_B = 0$)	ICEO	-	-	100	μAdc
Emitter Cutoff Current ($V_{CE} = 5 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	-	100	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)	ICEX	-	-	100	μAdc
SECOND BREAKDOWN	·				•
Second Breakdown Collector Current with Base Forward Biase $(V_{CE} = 50 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$ $(V_{CE} = 80 \text{ Vdc}, t = 1 \text{ s (non-repetitive)})$	d I _{S/b}	5 2.5		-	Adc
ON CHARACTERISTICS	·				•
DC Current Gain (I _C = 8 Adc, V _{CE} = 5 Vdc) (I _C = 16 Adc, V _{CE} = 5 Vdc)	h _{FE}	25 8		75	-
Base–Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)	V _{BE(on)}	-	-	2.2	Vdc
Collector-Emitter Saturation Voltage ($I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc}$) ($I_C = 16 \text{ Adc}, I_B = 3.2 \text{ Adc}$)	V _{CE(sat)}	-		1.4 4	Vdc
DYNAMIC CHARACTERISTICS	·				
Total Harmonic Distortion at the Output V _{RMS} = 28.3 V, f = 1 kHz, P _{LOAD} = 100 W _{RMS} h _{FE} unmatch	T _{HD}	_	0.8	_	%
(Matched pair h _{FE} = 50 @ 5 A/5 V) h _{FE} matched		-	0.08	-	
Current Gain Bandwidth Product ($I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz}$)	fT	4	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)	C _{ob}	-	-	500	pF

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle <2%

TYPICAL CHARACTERISTICS

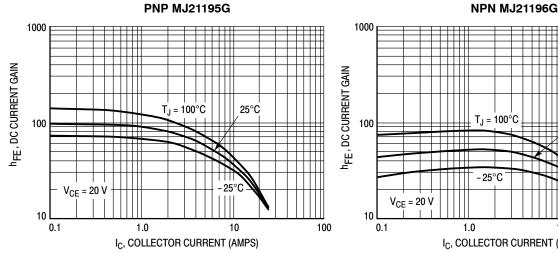
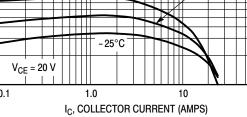
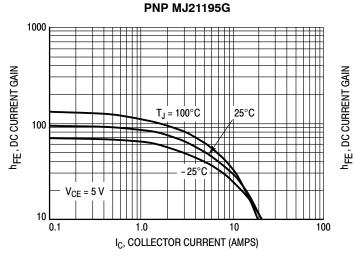



Figure 3. DC Current Gain, V_{CE} = 20 V



25°C

100

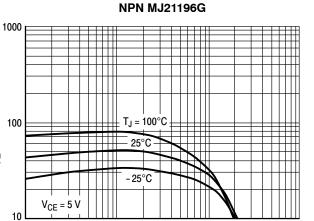
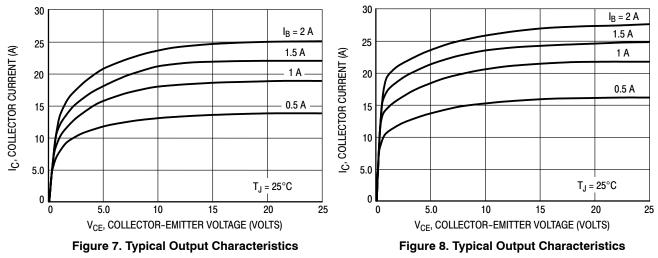

100

Figure 4. DC Current Gain, V_{CE} = 20 V

PNP MJ21195G



IC, COLLECTOR CURRENT (AMPS) Figure 6. DC Current Gain, V_{CE} = 5 V

NPN MJ21196G

10

1.0

0.1

www.onsemi.com

TYPICAL CHARACTERISTICS

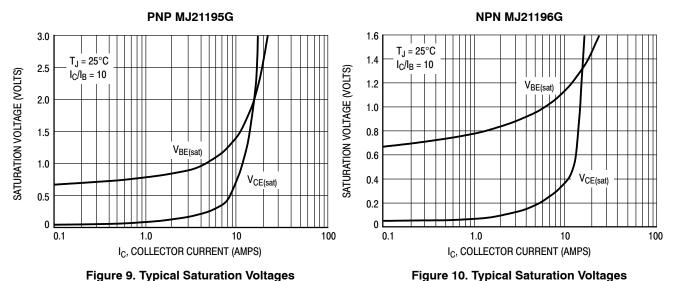


Figure 9. Typical Saturation Voltages

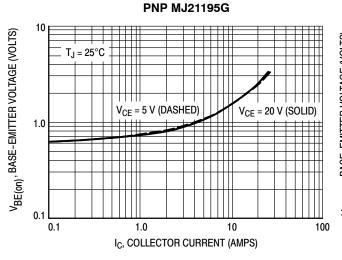
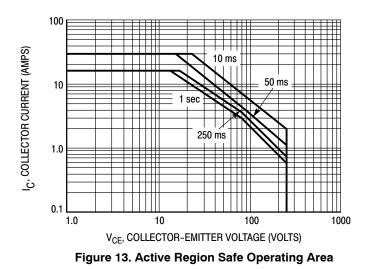



Figure 11. Typical Base-Emitter Voltage

NPN MJ21196G

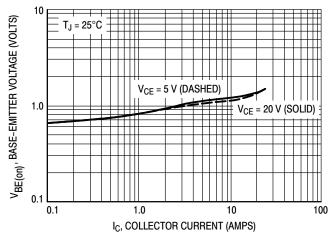


Figure 12. Typical Base-Emitter Voltage

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)} = 200^{\circ}C$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

MJ21195G – PNP

MJ21196G – NPN

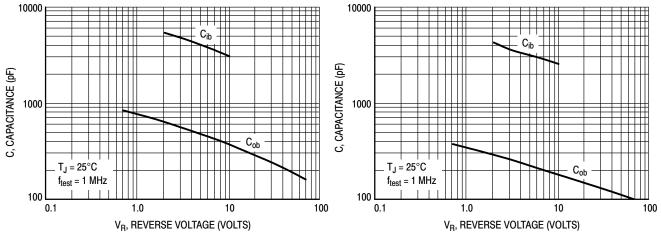
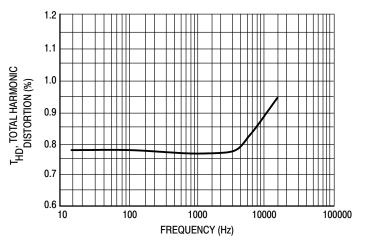



Figure 14. MJ21195 Typical Capacitance

Figure 15. MJ21196 Typical Capacitance

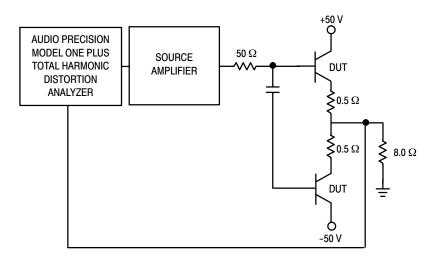


Figure 17. Total Harmonic Distortion Test Circuit

onsemi

TO-204 (TO-3) CASE 1-07 ISSUE Z DATE 10 MAR 2000 SCALE 1:1 NOTES: Δ 1. DIMENSIONING AND TOLERANCING PER ANSI ٠N Y14.5M. 1982. ¥ 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY. С E -T- SEATING PLANE MILLIMETERS Łκ INCHES → 🖛 D 2 PL MIN MAX MIN MAX DIM Α 1.550 REF 39.37 REF $| \oplus | \oslash 0.13 (0.005)$ \square T Q \square Y \square B
 -- 1.050
 -- 26.67

 0.250
 0.335
 6.35
 8.51

 D
 0.038
 0.043
 0.97

 E
 0.055
 0.070
 1.40
1.09 1.40 1.77 -Y-1-> v G 0.430 BSC 10.92 BSC
 H
 0.215 BSC
 5.46 BSC

 K
 0.440
 0.480
 11.18
 12.19
2**⊕** G ന് в 0.665 BSC 16.89 BSC L Ĥ
 N
 -- 0.830
 -- 21.08

 Q
 0.151
 0.165
 3.84
 4.19
 \oplus Å
 U
 1.187 BSC
 30.15 BSC

 V
 0.131
 0.188
 3.33
 4.77
-Q-⊕ Ø 0.13 (0.005) M T Y M STYLE 3: PIN 1. GATE 2. SOURCE STYLE 5: PIN 1. CATHODE 2. EXTERNAL TRIP/DELAY STYLE 1: PIN 1. BASE STYLE 4: PIN 1. GROUND STYLE 2: PIN 1. BASE 2. COLLECTOR 2 FMITTER 2 INPUT CASE: COLLECTOR CASE: EMITTER CASE: DRAIN CASE: OUTPUT CASE: ANODE STYLE 6: STYLE 7: STYLE 8: STYLE 9: PIN 1. GATE 2. EMITTER PIN 1. ANODE 2. OPEN PIN 1. CATHODE #1 2. CATHODE #2 PIN 1. ANODE #1 2. ANODE #2

DOCUMENT NUMBER:	98ASB42001B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-204 (TO-3)		PAGE 1 OF 1

CASE: ANODE

CASE: CATHODE

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

CASE: COLLECTOR

CASE: CATHODE

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>