onsemi

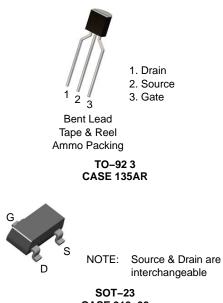
N-Channel RF Amplifier J211, MMBFJ211

Description

This device is designed for HF/VHF mixer/amplifier and applications where process 50 is not adequate. Sufficient gain and low–noise for sensitive receivers. Sourced from process 90.

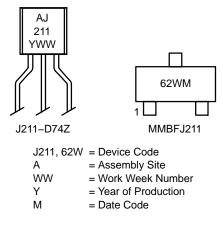
MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted) (Notes 1,
--

Symbol	Parameter	Value	Unit
V _{DG}	Drain-Gate Voltage	25	V
V _{GS}	V _{GS} Gate–Source Voltage		V
I _{GF}	I _{GF} Forward Gate Current		mA
T _J , T _{STG}	T _J , T _{STG} Operating and Storage Junction Temperature Range		°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. These ratings are based on a maximum junction temperature of 150°C.

These are steady-state limits. onsemi should be consulted on applications involving pulsed or low- duty-cycle operations.


		Мах		
Symbol	Parameter	J211 (Note 3)	MMBFJ211 (Note 3)	Unit
PD	Total Device Dissipation	350	225	mW
	Derate Above 25°C	2.8	1.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	125	-	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient	357	556	°C/W

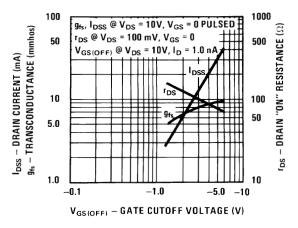
 Device mounted on FR-4 PCB 36 mm x 18 mm x 1.5 mm; mounting pad for the collector lead minimum 6 cm².

CASE 318-08

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Max	Unit
OFF CHAR	ACTERISTICS				
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = 1.0 \ \mu A, \ V_{DS} = 0$	-25	-	V
I _{GSS}	Gate Reverse Current	$V_{GS} = 15 V, V_{DS} = 0$	-	-100	pА
$V_{GS}(off)$	Gate-Source Cut-Off Voltage	V _{DS} = 15 V, I _D = 1.0 nA	-2.5	-4.5	V
ON CHAR	ACTERISTICS				
I _{DSS}	Zero–Gate Voltage Drain Current (Note 4)	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0$	7.0	20	mA
SMALL SIG	GNAL CHARACTERISTICS				
9 _{fs}	Common Source Forward Transconductance	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1.0 \text{ kHz}$	7000	12000	μmhos
g _{oss}	Common Source Output Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz	-	200	μmhos

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse test: pulse width \leq 300 μ s

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Parameter Interactions

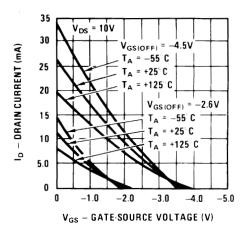


Figure 3. Transfer Characteristics

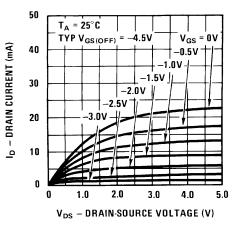
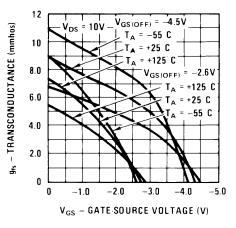



Figure 2. Common Drain-Source

Figure 4. Transfer Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

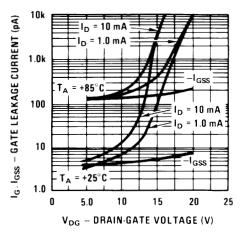


Figure 5. Leakage Current vs. Voltage

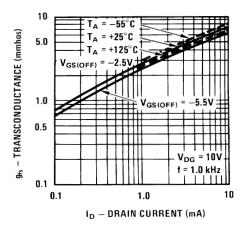


Figure 7. Transconductance vs. Drain Current

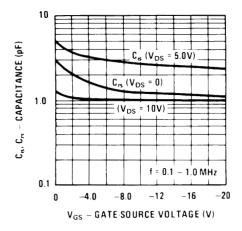


Figure 9. Capacitance vs. Voltage

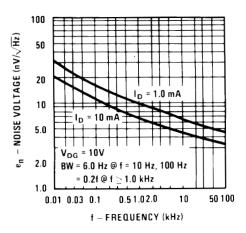


Figure 6. Noise Voltage vs. Frequency

Figure 8. Output Conductance vs. Drain Current

COMMON SOURCE CHARACTERISTICS

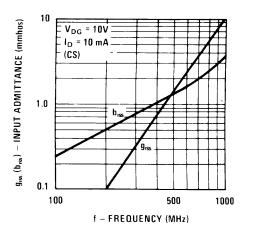


Figure 10. Input Admittance

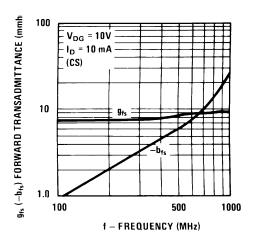


Figure 11. Forward Transadmittance

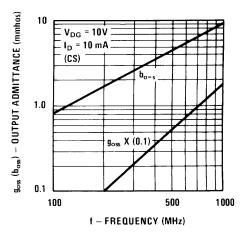


Figure 12. Output Admittance

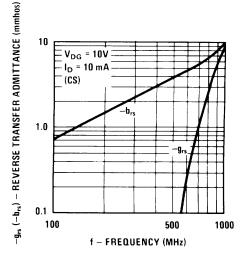


Figure 13. Reverse Transadmittance

COMMON GATE CHARACTERISTICS

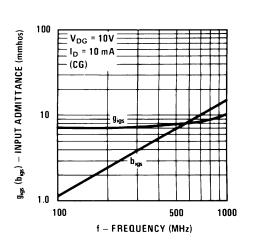


Figure 14. Input Admittance

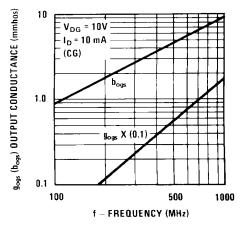


Figure 16. Output Admittance

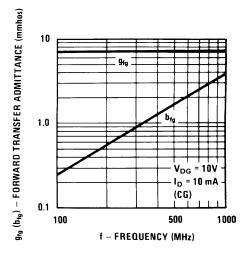


Figure 15. Forward Transadmittance

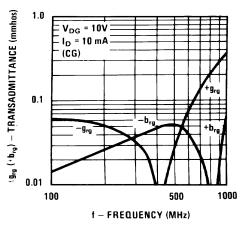
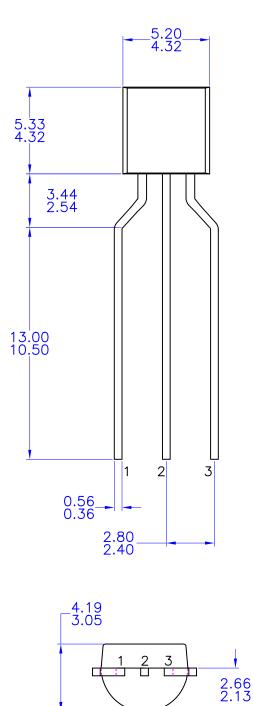
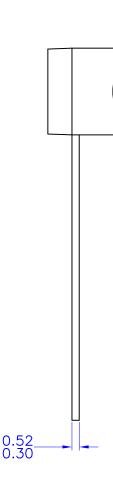


Figure 17. Reverse Transadmittance

ORDERING INFORMATION


Part Number	Top Mark	Package	Packing Method [†]
J211–D74Z	J211	TO-92 3L (Pb-Free)	Ammo
MMBFJ211	62W	SOT-23 3L (Pb-Free)	Tape and Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 3 4.83x4.76 LEADFORMED CASE 135AR ISSUE O

DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.

- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994

DOCUMENT NUMBER:	98AON13879G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 3 4.83X4.76 LEADFORMED		PAGE 1 OF 1

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>