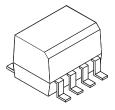


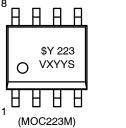
8-pin SOIC Darlington Output Optocouplers MOC223M, MOCD223M

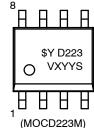
Description


The MOC223M consists of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon photodarlington detector, in a surface mountable, small outline, plastic package. The MOCD223M is a dual-channel version of the MOC223M. They are ideally suited for high density applications, and eliminates the need for through the board mounting.

Features

- High Current Transfer Ratio of 500% Minimum at I_F = 1 mA
- Minimum BV_{CEO} of 30 V Guaranteed
- Convenient Plastic SOIC-8 Surface Mountable Package Style, with 0.050" Lead Spacing
- Safety and Regulatory Approvals:
 - ◆ UL2688, 2,500 VAC_{RMS} for 1 Minute
 - ◆ DIN-EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage
- These Devices are Pb-Free and Halogen Free


Applications


- Low Power Logic Circuits
- Interfacing and Coupling Systems of Different Potentials and Impedances
- Telecommunications Equipment
- Portable Electronics
- Solid State Relays

SOIC8 CASE 751DZ

MARKING DIAGRAMS

\$Y = **onsemi** Logo 223/D223 = Specific Device

223/D223 = Specific Device Code V = DIN EN/IEC60747-5-5 Option

X = One-Digit Year Code
YY = Digit Work Week
S = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

SCHEMATICS

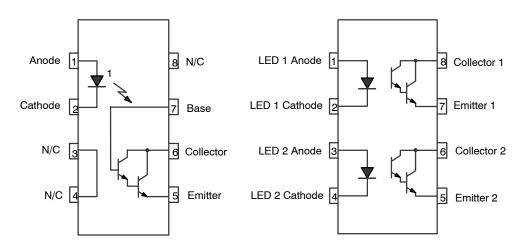


Figure 1. Schematic - MOC223M

Figure 2. Schematic - MOCD223M

SAFETY AND INSULATION RATINGS

Parameter		Characteristics
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	< 150 V _{RMS}	I–IV
	< 300 V _{RMS}	I–III
Climatic Classification		55/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V _{PR}	Input–to–Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	904	V _{peak}
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 \text{ s}$, Partial Discharge < 5 pC	1060	
V _{IORM}	Maximum Working Insulation Voltage	565	
V _{IOTM}	Highest Allowable Over-Voltage	4000	
	External Creepage	≥ 4	mm
	External Clearance	≥ 4	
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	
T _S	Case Temperature (Note 1)	150	°C
I _{S,INPUT}	Input Current (Note 1)	200	mA
P _{S,OUTPUT}	Output Power (Note 1)	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	> 10 ⁹	Ω

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

^{1.} Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Value	Unit	
TOTAL DEVI	CE		•	
T _{STG}	Storage Temperature	-40 to +125	°C	
T _A	Ambient Operating Temperature	-40 to +100		
T _J	Junction Temperature	-40 to +125		
T _{SOL}	Lead Solder Temperature	260 for 10 s		
P_{D}	Total Device Power Dissipation @ T _A = 25°C	240	mW	
	Derate Above 25°C	2.94	mW/°C	
EMITTER			•	
I _F	Continuous Forward Current	60	mA	
I _F (pk)	Forward Current – Peak (PW = 100 μs, 120 pps)	1.0	Α	
V _R	Reverse Voltage	6.0	V	
P_{D}	LED Power Dissipation @ T _A = 25°C	90	mW	
	Derate Above 25°C	0.8	mW/°C	
DETECTOR				
I _C	Continuous Collector Current	150	mA	
V _{CEO}	Collector-Emitter Voltage	30	V	
V_{CBO}	Collector-Base Voltage, MOC223M	70		
V _{ECO}	Emitter–Collector Voltage	7		
P _D	Detector Power Dissipation @ T _A = 25°C	150	mW	
	Derate Above 25°C	1.76	mW/°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
EMMITER			•			
V _F	Input Forward Voltage	I _F = 1.0 mA	_	1.08	1.3	V
I _R	Reverse Leakage Current	V _R = 6.0 V	-	0.001	100	μΑ
C _{IN}	Input Capacitance		_	18	_	pF
DETECTOR						
I _{CEO1}	Collector-Emitter Dark Current	V _{CE} = 5.0 V, T _A = 25°C	_	1.0	50	nA
I _{CEO2}	7	V _{CE} = 5.0 V, T _A = 100°C	-	1.0	-	μΑ
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 100 μA	30	100	-	V
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = 100 μA	70	120	-	1
BV _{ECO}	Emitter-Collector Breakdown Voltage	I _E = 100 μA	7	10	_	
C _{CE}	Collector-Emitter Capacitance	f = 1.0 MHz, V _{CE} = 0	-	5.5	_	pF
COUPLED						
CTR	Current Transfer Ratio	I _F = 1.0 mA, V _{CE} = 5.0 V	500	1000	_	%
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 500 \mu A, I_F = 1.0 \text{ mA}$	-	-	1.0	V
t _{on}	Turn-On Time	I _F = 5.0 mA, V _{CC} = 10 V,	-	10	-	μs
t _{off}	Turn-Off Time	\dot{R}_L = 100 Ω (Figure 8)	-	55	-	
t _r	Rise Time		-	8	-	
t _f	Fall Time		-	45	-	

ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise specified. (continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
ISOLATION CHARACTERISTICS						
V _{ISO}	Input-Output Isolation Voltage	t = 1 min	2500	_	_	VAC _{RMS}
C _{ISO}	Isolation Capacitance	V _{I-O} = 0, f = 1 MHz	-	0.2	_	pF
R _{ISO}	Isolation Resistance	$V_{I-O} = \pm 500 \ V_{DC}, T_A = 25^{\circ}C$	10 ¹¹	-	-	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CURVES

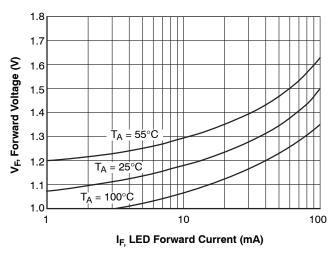


Figure 3. LED Forward Voltage vs. Forward Current

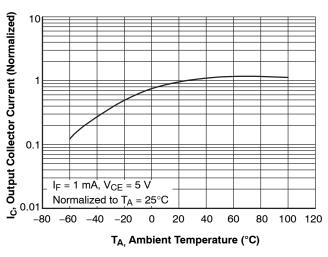


Figure 5. LED Forward Voltage vs. Forward Current

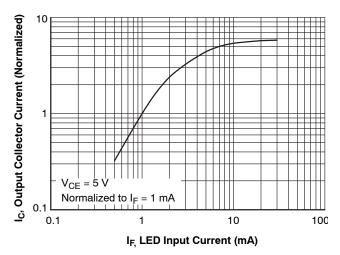


Figure 4. Output Current vs. Input Current

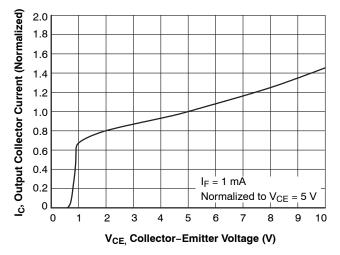


Figure 6. Output Current vs. Collector-Emitter Voltage

TYPICAL PERFORMANCE CURVES

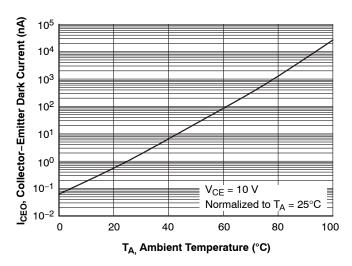


Figure 7. Dark Current vs. Ambient Temperature

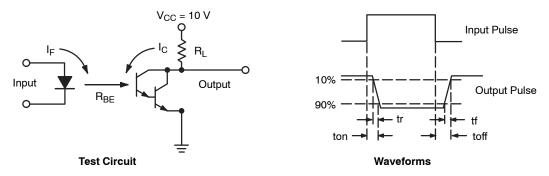


Figure 8. Switching Time Test Circuit and Waveforms

REFLOW PROFILE

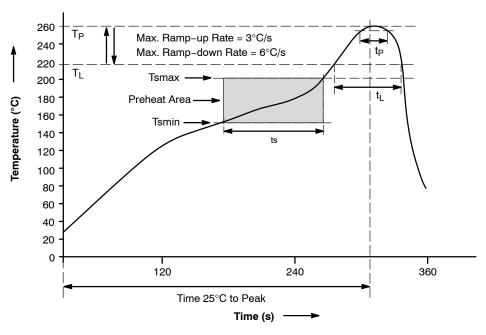
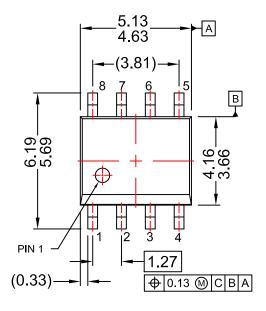
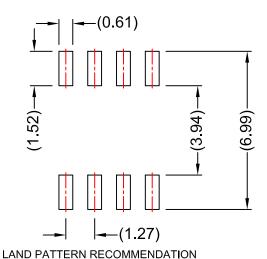


Figure 9. Reflow Profile

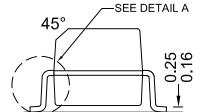
REFLOW PROFILE

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60-120 s
Ramp-up Rate (t _L to t _P)	3°C/s max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60–150 s
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 s
Ramp-down Rate (T _P to T _L)	6°C/s max.
Time 25°C to Peak Temperature	8 min max.

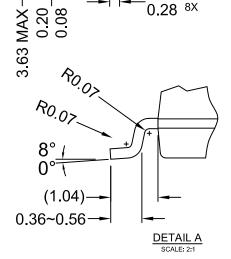

ORDERING INFORMATION


Part Number	Package	Shipping [†]
MOC223M	Small Outline 8-Pin	50 Units / Tube
MOC223R2M	Small Outline 8-Pin	2500 Units / Tape and Reel
MOC223VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	50 Units / Tube
MOC223R2VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	2500 Units / Tape and Reel
MOCD223M	Small Outline 8-Pin	50 Units / Tube
MOCD223R2M	Small Outline 8-Pin	2500 Units / Tape and Reel
MOCD223VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	50 Units / Tube
MOCD223R2VM	Small Outline 8-Pin, DIN EN/IEC60747-5-5 Option	2500 Units / Tape and Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


SOIC8 CASE 751DZ ISSUE O

DATE 30 SEP 2016


0.53 0.28 8X

END VIEW

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M.

DOCUMENT NUMBER:	98AON13733G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC8		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales