

Power Factor Corrected LED Driver with Primary Side CC/CV

NCL30488

The NCL30488 is a power factor corrected flyback controller targeting isolated constant current LED drivers. The controller operates in a quasi-resonant mode to provide high efficiency. Thanks to a novel control method, the device is able to tightly regulate a constant LED current from the primary side. This removes the need for secondary side feedback circuitry, its biasing and for an optocoupler.

The device is highly integrated with a minimum number of external components. A robust suite of safety protection is built in to simplify the design.

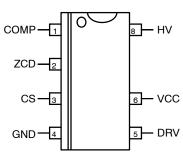
Features

- High Voltage Startup
- Quasi-resonant Peak Current-mode Control Operation
- Primary Side Feedback
- CC / CV Accurate Control V_{in} up to 320 V rms
- Tight LED Constant Current Regulation of ±2% Typical
- Digital Power Factor Correction
- Cycle by Cycle Peak Current Limit
- Wide Operating V_{CC} Range
- $-40 \text{ to} + 125^{\circ}\text{C}$
- Robust Protection Features
 - ◆ Brown-Out
 - ◆ OVP on V_{CC}
 - Constant Voltage / LED Open Circuit Protection
 - Winding Short Circuit Protection
 - Secondary Diode Short Protection
 - Output Short Circuit Protection
 - Thermal Shutdown
 - Line over Voltage Protection
- This is a Pb-Free Device

Typical Applications

- Integral LED Bulbs
- LED Power Driver Supplies
- LED Light Engines

L30488 = Specific Device Code


XX = Version

A = Assembly Location L = Wafer Lot

L = Wafer Lot YW = Assembly

YW = Assembly Start Week = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 21 of this data sheet.

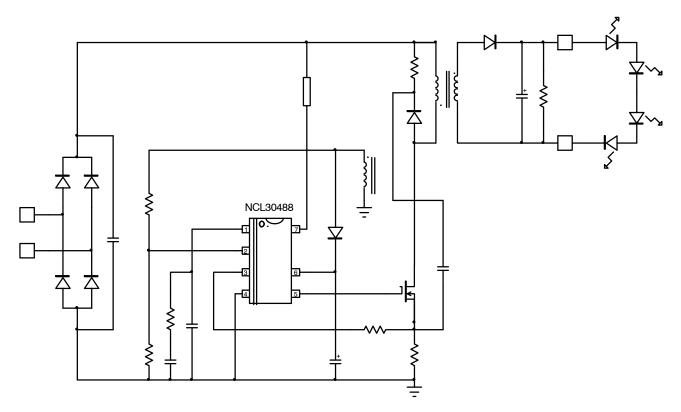


Figure 1. Typical Application Schematic for NCL30488

PIN FUNCTION DESCRIPTION NCL30488

Pin N°	Pin Name	Function	Pin Description
1	COMP	OTA output for CV loop	This pin receives a compensation network (capacitors and resistors) to stabilize the CV loop
2	ZCD	Zero crossing Detection V _{aux} sensing	This pin connects to the auxiliary winding and is used to detect the core reset event. This pin also senses the auxiliary winding voltage for accurate output voltage control.
3	CS	Current sense	This pin monitors the primary peak current.
4	GND	-	The controller ground
5	DRV	Driver output	The driver's output to an external MOSFET
6	VCC	Supplies the controller	This pin is connected to an external auxiliary voltage.
7	NC	creepage	
8	HV	High Voltage sensing	This pin connects after the diode bridge to provide the startup current and internal high voltage sensing function.

INTERNAL CIRCUIT ARCHITECTURE

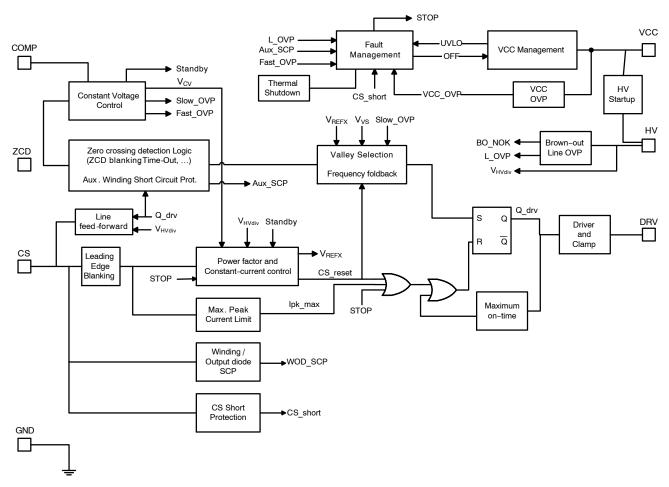


Figure 2. Internal Circuit Architecture NCL30488

MAXIMUM RATINGS TABLE

Symbol	Rating	Value	Unit
V _{CC(MAX)}	Maximum Power Supply voltage, VCC pin, continuous voltage Maximum current for VCC pin	-0.3 to 30 Internally limited	V mA
V _{DRV(MAX)} I _{DRV(MAX)}	Maximum driver pin voltage, DRV pin, continuous voltage Maximum current for DRV pin	-0.3, V _{DRV} (Note 1) -300, +500	V mA
V _{HV(MAX)} I _{HV(MAX)}	Maximum voltage on HV pin Maximum current for HV pin (dc current self-limited if operated within the allowed range)	-0.3, +700 ±20	V mA
V _{MAX} I _{MAX}	Maximum voltage on low power pins (except pins DRV and VCC) Current range for low power pins (except pins DRV and VCC)	-0.3, 5.5 (Note 2) -2, +5	V mA
$R_{\theta J-A}$	Thermal Resistance Junction-to-Air	200	°C/W
T _{J(MAX)}	Maximum Junction Temperature	150	°C
	Operating Temperature Range	-40 to +125	°C
	Storage Temperature Range	-60 to +150	°C
	ESD Capability, HBM model except HV pin (Note 3)	4	kV
	ESD Capability, HBM model HV pin	1.5	kV
	ESD Capability, CDM model (Note 3)	1	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- V_{DRV} is the DRV clamp voltage V_{DRV(high)} when V_{CC} is higher than V_{DRV(high)}. V_{DRV} is V_{CC} otherwise.
 This level is low enough to guarantee not to exceed the internal ESD diode and 5.5 V ZENER diode. More positive and negative voltages can be applied if the pin current stays within the -2 mA / 5 mA range.
- 3. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per Mil-Std-883, Method 3015. Charged Device Model 1000 V per JEDEC Standard JESD22–C101D.
- 4. This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78.

Parameter	Test Condition	Symbol	Min	Тур	Max	Unit
HIGH VOLTAGE SECTION						_
High voltage current source	$V_{CC} = V_{CC(on)} - 200 \text{ mV}$	I _{HV(start2)}	3.9	5.1	6.2	mA
High voltage current source	V _{CC} = 0 V	I _{HV(start1)}	-	300	-	μΑ
V_{CC} level for $I_{HV(start1)}$ to $I_{HV(start2)}$ transition		V _{CC(TH)}	-	0.8	-	V
Minimum startup voltage	V _{CC} = 0 V	V _{HV(MIN)}	-	15	-	V
HV source leakage current	V _{HV} = 450 V	I _{HV(leak)}	-	4.5	10	μΑ
Maximum input voltage (rms) for correct operation of the PFC loop		V _{HV(OL)}	320	-	-	V rms
SUPPLY SECTION						
Supply Voltage Startup Threshold Minimum Operating Voltage Hysteresis V _{CC(on)} – V _{CC(off)} Internal logic reset	V _{CC} increasing V _{CC} decreasing V _{CC} decreasing	VCC(on) VCC(off) VCC(HYS) VCC(reset)	16 9.3 7.6 4	18 10.2 - 5	20 10.7 - 6	V
Over Voltage Protection VCC OVP threshold		V _{CC(OVP)}	25	26.5	28	V
V _{CC(off)} noise filter (Note 5) V _{CC(reset)} noise filter (Note 5)		t _{VCC(off)} t _{VCC(reset)}	- -	5 20	_ _	μs
Supply Current Device Disabled/Fault Device Enabled/No output load on pin 5 Device Switching (F _{sw} = 65 kHz) Device switching (F _{sw} = 700 Hz)	$V_{CC} > V_{CC(off)}$ $F_{sw} = 65 \text{ kHz}$ $C_{DRV} = 470 \text{ pF, } F_{sw} = 65 \text{ kHz}$ $V_{COMP} \leq 0.9 \text{ V}$	I _{CC1} I _{CC2} I _{CC3} I _{CC4}	1.2 - - -	1.35 3.0 3.5 1.7	1.6 3.5 4.0 1.88	mA

Parameter	Test Condition	Symbol	Min	Тур	Max	Unit
CURRENT SENSE						
Maximum Internal current limit		V_{ILIM}	1.33	1.40	1.47	V
Leading Edge Blanking Duration for V _{ILIM}		t _{LEB}	283	345	407	ns
Propagation delay from current detection to gate off-state		t _{ILIM}	-	100	150	ns
Maximum on-time (option 1)		t _{on(MAX)}	29	39	49	μs
Maximum on-time (option 2)		t _{on(MAX)}	16	20	24	μs
Threshold for immediate fault protection activation (140% of V _{ILIM})		V _{CS(stop)}	1.9	2.0	2.1	V
Leading Edge Blanking Duration for V _{CS(stop)}		t _{BCS}	-	170	-	ns
Current source for CS to GND short detection		I _{CS(short)}	400	500	600	μΑ
Current sense threshold for CS to GND short detection	V _{CS} rising	V _{CS(low)}	20	60	90	mV
GATE DRIVE						
Drive Resistance DRV Sink DRV Source		R _{SNK} R _{SRC}	-	13 30		Ω
Drive current capability DRV Sink (Note GBD) DRV Source (Note GBD)		I _{SNK} I _{SRC}	- -	500 300	- -	mA
Rise Time (10% to 90%)	C _{DRV} = 470 pF	t _r	_	30	-	ns
Fall Time (90 %to 10%)	C _{DRV} = 470 pF	t _f	_	20	_	ns
DRV Low Voltage	$V_{CC} = V_{CC(off)} + 0.2 \text{ V}$ $C_{DRV} = 470 \text{ pF}, R_{DRV} = 33 \text{ k}\Omega$	V _{DRV(low)}	8	-	-	٧
DRV High Voltage	$V_{CC} = V_{CC(MAX)}$ $C_{DRV} = 470 \text{ pF, } R_{DRV} = 33 \text{ k}\Omega$	$V_{DRV(high)}$	10	12	14	٧
ZERO VOLTAGE DETECTION CIRCUIT						
Upper ZCD threshold voltage	V _{ZCD} rising	V _{ZCD(rising)}	-	90	150	mV
Lower ZCD threshold voltage	V _{ZCD} falling	V _{ZCD(falling)}	35	55	_	mV
Threshold to force V _{REFX} maximum during startup	V _{ZCD} falling	V _{ZCD(start)}	-	0.7	_	V
ZCD hysteresis		V _{ZCD(HYS)}	15	-	_	mV
Propagation Delay from valley detection to DRV high (no t _{LEB4})	V _{ZCD} decreasing	t _{ZCD(DEM)}	-	-	150	ns
Additional delay from valley lockout output to DRV latch set (programmable option)	V _{ZCD} decreasing	T _{LEB4}	125	250	375	ns
Equivalent time constant for ZCD input (GBD)		t _{PAR}	-	20	-	ns
Blanking delay after on-time (option 1)	V _{REFX} > 0.35 V	t _{ZCD(blank1)}	1.1	1.5	1.9	μS
Blanking delay after on-time (option 2)	V _{REFX} > 0.35 V	t _{ZCD(blank1)}	0.75	1.0	1.25	μS
Blanking Delay at light load (option 1)	V _{REFX} < 0.25 V	t _{ZCD(blank2)}	0.6	0.8	1.0	μs
Blanking Delay at light load (option 2)	V _{REFX} < 0.25 V	t _{ZCD(blank2)}	0.45	0.6	0.75	μs
Timeout after last DEMAG transition		t _{TIMO}	5	6.5	8	μs
Pulling-down resistor	$V_{ZCD} = V_{ZCD(falling)}$	R _{ZCD(pd)}	-	200	_	kΩ
CONSTANT CURRENT CONTROL						
Reference Voltage	T _j = 25°C – 85°C	V _{REF/3}	327.9	334.2	341.2	mV
Reference Voltage	$T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	V _{REF/3}	324	334.2	346	mV
Current sense lower threshold for detection of the leakage inductance reset time	V _{CS} falling	V _{CS(low)}	20	50	100	mV
Blanking time for leakage inductance reset detection		t _{CS(low)}	-	120	_	ns

Parameter	Test Condition	Symbol	Min	Тур	Max	Unit
POWER FACTOR CORRECTION						
Clamping value for V _{REF(PFC)}	T _J = 0°C to 125°C	V _{REF(PFC)CLP}	2.06	2.2	2.34	V
Line range detector for PFC loop	V _{HV} increases	V _{HL(PFC)}	-	240	-	Vdc
Line range detector for PFC loop	V _{HV} decreases	V _{LL(PFC)}	1	230	-	Vdc
CONSTANT VOLTAGE SECTION						
Internal voltage reference for constant voltage regulation		V _{REF(CV)}	3.41	3.52	3.63	V
CV Error amplifier Gain		G _{EA}	40	50	60	μS
Error amplifier current capability	V _{REFX} = V _{REF} (no dimming)	I _{EA}	-	±60	-	μΑ
COMP pin lower clamp voltage		V _{CV(clampL)}	-	0.6	-	V
COMP pin higher clamp voltage	T _J = 0°C to 125°C	V _{CV(clampH)}	4.05	4.12	4.25	V
COMP pin higher clamp voltage	$T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	V _{CV(clampH)}	4.01	4.12	4.25	V
Internal divider V _{COMP} to V _{REFX}		K _{COMP}	-	4	-	
Internal ZCD voltage below which the CV OTA is boosted	V _{REF(CV)} * 85%	V _{boost(CV)}	2.796	2.975	3.154	V
Threshold for releasing the CV boost	V _{REF(CV)} * 90%	V _{boost(CV)RST}	2.96	3.15	3.34	V
Error amplifier current capability during boost phase		I _{EAboost}	1	±140	-	μΑ
ZCD OVP 1st level (slow OVP) option 1	V _{REF(CV)} * 115%	V _{OVP1}	3.783	4.025	4.267	V
ZCD voltage at which slow OVP is exit (option 1)	V _{REF(CV)} * 105%	V _{OVP1rst}	-	3.675	-	V
Switching period during slow OVP		T _{sw(OVP1)}	-	1.5	-	ms
ZCD fast OVP option 1	V _{ref(CV)} * 125% + 150 mV	V _{OVP2}	4.253	4.525	4.797	V
Number of switching cycles before fast OVP confirmation		T _{OVP2_CNT}	-	4	-	
Duration for disabling DRV pulses during ZCD fast OVP		T _{recovery}	-	4	-	S
COMP pin internal pullup resistor (SSR option)		R _{pullup}	-	15	_	kΩ
LINE FEED FORWARD						
V _{HV} to I _{CS(offset)} conversion ratio		K _{LFF}	0.189	0.21	0.231	μ A /V
Offset current maximum value	V _{HV} > (450 V or 500 V)	I _{offset(MAX)}	76	95	114	μΑ
Line feed-forward current	DRV high, V _{HV} = 200 V	I _{FF}	35	40	45	μΑ
VALLEY LOCKOUT SECTION						
Threshold for line range detection V_{HV} increasing (1 st to 2 nd valley transition for $V_{REFX} > 80\% \ V_{REF}$) (prog. option: 1 st to 3 rd valley transition)	V _{HV} increases	V _{HL}	228	240	252	V
Threshold for line range detection V_{HV} decreasing (2^{nd} to 1^{st} valley transition for $V_{REFX} > 80\%$ V_{REF}) (prog. option: 3^{rd} to 1^{st} valley transition)	V _{HV} decreases	V _{LL}	218	230	242	V
Blanking time for line range detection		t _{HL(blank)}	15	25	35	ms

Fig. 2	Parameter	Test Condition	Symbol	Min	Тур	Max	Unit
1st to 20° vallely transition at LL and 20° to 5° valley HL\	VALLEY LOCKOUT SECTION						
2nd to 14* valley transition at LL and 3*th to 3*th valley HL) V _{REF} increases V _{VLY2-1/3-2} - 0.90 - HL, V _{REF} incr. (ropo- option: **Ph to 3*th valley HL) 2nd to 3*th valley transition at LL and 3*th to 3*th valley HL) V _{REF} increases V _{VLY2-3/3-4} - 0.65 - 1, V _{REF} decreases (ropo- option: 5*th 0.4** valley HL) 3*th to 5*th valley HL) V _{VLY3-3/4-4} - 0.50 - 4** to 5** valley transition at LL and 4*h to 5** valley HL) 4*th to 5** valley transition at LL and 5*h to 8** valley HL) V _{VLY3-3/6-4} - 0.60 - 4*h to 5** valley transition at LL and 5*h to 8** valley HL) V _{REF} decreases V _{VLY3-3/6-6} - 0.35 - 4*h to 5** valley transition at LL and 5*h to 8** valley HL) V _{REF} alone copion: 7*h to 6** valley HL) V _{REF} increases V _{VLY3-3/6-6} - 0.35 - 4*h to 5** valley transition at LL and 5*h to 5** valley V _{REF} increases V _{VLY4-3/6-6} - 0.45 - 4*h to 5** valley transition at LL and 5*h to 5** valley V _{REF} cope - 0.45 - - 0.25 - N 7*h to 5** valley transit	1 st to 2 nd valley transition at LL and 2 nd to 3 rd valley	V _{REF} decreases	V _{VLY1-2/2-3}	-	0.80	_	V
2	2 nd to 1 st valley transition at LL and 3 rd to 2 nd valley	V _{REF} increases	V _{VLY2-1/3-2}	-	0.90	-	
Variety Vari	2 nd to 3 rd valley transition at LL and 3 rd to 4 th valley	V _{REF} decreases	V _{VLY2-3/3-4}	-	0.65	_	
Sign Color Minimum Sign Si	3 rd to 2 nd valley transition at LL and 4 th to 3 rd valley	V _{REF} increases	V _{VLY3-2/4-3}	-	0.75	-	
4th to 5th valley transition at LL and 5th to 4th valley HL), Vage fine (prog. option: 6th to 5th valley HL), Vage fine (prog. option: 6th to 5th valley HL), Vage fine (prog. option: 6th to 5th valley HL), Vage fore (prog. option: 6th to 5th valley HL), Vage fore (prog. option: 6th to 5th valley HL), Vage fore (prog. option: 6th to 5th valley HL) VVLY4-9,5-6 - 0.35 - VREF value at which the FF mode is activated VREF decreases VFFstart - 0.25 - V VREF value at which the FF mode is removed VREF decreases VFFstart - 0.25 - V VREF value at which the FF mode is removed VREF decreases VFFstart - 0.25 - V VREF value at which the FF mode is removed VREF decreases VFFstart - 0.25 - V VREF value at which the FF mode is removed VREF decreases VFFstart - 0.25 - V VREF value at which the FF mode is activated VREF decreases VFFstart - 0.35 - V VREF value at which the FF mode is activated VREF decreases VFFstart - 0.35 - V 1.0 1.0 1.0	3 rd to 4 th valley transition at LL and 4 th to 5 th valley	V _{REF} decreases	V _{VLY3-4/4-5}	-	0.50	-	
4th to 5th valley transition at LL and 5th to 6th valley HL, VBF decreases Vol.24-5t6-8 - 0.35 - HL, VBF decreases (progo, option: 6th of th valley HL) VREF increases VVLX5-4t6-8 - 0.45 - VREF value at which the FF mode is activated VREF decreases VFFstatt - 0.25 - V VREF value at which the FF mode is removed VREF increases VFFstatt - 0.25 - V FREQUENCY FOLDBACK VREFX = 0.25 V tFFILL 0.8 1.0 1.2 µ Added dead time VREFX = 0.25 V tFFILL 0.8 1.0 1.2 µ Dead-time clamp (option 1) VREFX = 0.08 V tFFendg - 40 - µ Dead-time clamp (option 2) VREFX < 0.08 V	4 th to 3 th valley transition at LL and 5 th to 4 th valley	V _{REF} increases	V _{VLY4-3/5-4}	-	0.60	-	
Sin to 4th valley transition at LL and 6th to 5th valley HLL, VREF increases	4 th to 5 th valley transition at LL and 5 th to 6 th valley	V _{REF} decreases	V _{VLY4-5/5-6}	-	0.35	-	
VREF value at which the FF mode is removed VREF increases VFFstop − 0.35 − 0.35 − 0.35	5 th to 4 th valley transition at LL and 6 th to 5 th valley	V _{REF} increases	V _{VLY5-4/6-5}	-	0.45	_	
Added dead time	V _{REF} value at which the FF mode is activated	V _{REF} decreases	V _{FFstart}	-	0.25	_	V
Added dead time	V _{REF} value at which the FF mode is removed	V _{REF} increases	V_{FFstop}	-	0.35	-	V
Added dead time	FREQUENCY FOLDBACK						
Dead-time clamp (option 1)	Added dead time	V _{REFX} = 0.25 V	t _{FF1LL}	0.8	1.0	1.2	μs
Dead-time clamp (option 2)	Added dead time	V _{REFX} = 0.08 V	t _{FFchg}	-	40	-	μS
Minimum added dead-time in standby VREFX = 0 VR	Dead-time clamp (option 1)	V _{REFX} < 3 mV	t _{FFend1}	-	675	-	μS
Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum added dead–time in standby (option 2) VREFX = 0, VCOMP < 0.7 V toT(max)SBY2 - 1.8 - Maximum ad	Dead-time clamp (option 2)	V _{REFX} < 11.2 mV	t _{FFend2}	-	250	-	μs
FAULT PROTECTION Thermal Shutdown (Note 5) Device switching (F _{SW} around 65 kHz) T _{SHDN} 130 150 170 1	Minimum added dead-time in standby	V _{REFX} = 0	t _{DT(min)} SBY	-	650	-	μs
Thermal Shutdown (Note 5)	Maximum added dead-time in standby (option 2)	V _{REFX} = 0, V _{COMP} < 0.7 V	t _{DT(max)} SBY2	-	1.8	_	ms
Thermal Shutdown Hysteresis Thermal Shutdown Hysteresis Threshold voltage for output short circuit or aux. Winding short circuit detection Short circuit detection Short circuit detection Timer VzCD < VzCD(short) Auto-recovery Timer Line OVP threshold VHV increasing VHV(OVP) HV pin voltage at which Line OVP is reset VHV decreasing VHV(OVP) Brown-Out AND LINE SENSING Brown-Out ON level (IC start pulsing) Brown-Out ON level (IC start pulsing) VHV increasing VHV increasing VHVBO(on) VHV	FAULT PROTECTION						
Threshold voltage for output short circuit or aux. winding short circuit detection Short circuit detection Timer Auto-recovery Timer Line OVP threshold VHV increasing VHV(OVP) WHV(OVP) A57 WHV increasing VHV(OVP) A57 WHV increasing WHV(OVP) A57 WHV increasing WHVBO(on) WHVBO(on) WHVBO(on) WHVBO(on) WHVBO(on) WHVBO(on) WHVBO(off) WHVBO(off)	Thermal Shutdown (Note 5)		T _{SHDN}	130	150	170	°C
winding short circuit detection Short circuit detection Timer VzCD < VzCD(short) Auto-recovery Timer Line OVP threshold HV pin voltage at which Line OVP is reset Blanking time for line OVP reset Brown-Out ON level (IC start pulsing) Brown-Out ON level (IC start pulsing) Brown-Out OFF level (IC stops pulsing) Brown-Out OFF level (IC stops pulsing) Why decreasing Vhy decreasing Vhy decreasing Vhy decreasing Vhy brown-Out OFF level (IC stops pulsing) option 2 Why decreasing Vhy decreasing Vhy decreasing VhyBO(off) VhyBO(off) VhyBO(off) Page 137 Vhy bin voltage above which the sampling of ZCD is enabled low line Why decreasing, highline VsampENLL Volume VsampENLL Volume VsampENLL VsampENHL	Thermal Shutdown Hysteresis		T _{SHDN(HYS)}	-	20	_	°C
Auto-recovery Timer Line OVP threshold VHV increasing VHV(OVP) 457 469 485 VHV pin voltage at which Line OVP is reset VHV decreasing VHV(OVP)RST 430 443 465 VHV decreasing VHVBO(on) 15 15 108 114.5 VHV increasing VHVBO(on) Brown-Out ON level (IC start pulsing) option 2 VHV increasing VHVBO(on) VHVBO(on) VHVBO(off) 129.7 138 146.3 VHVBO(off) PUNDO(off) PUNDO(off) PUNDO(off) PUNDO(off) PUNDO(off) PUNDO(off) VHVBO(off) VSampENLL VSampENLL VSampENLL VSampENLL VSampENLL VSampENHL			V _{ZCD(short)}	0.6	0.65	0.7	V
Line OVP threshold VHV increasing VHV(OVP) VHV(OVP)RST VHV(OVP)RST	Short circuit detection Timer	V _{ZCD} < V _{ZCD(short)}	t _{OVLD}	70	90	110	ms
HV pin voltage at which Line OVP is reset VHV decreasing VHV(OVP)RST VHV(OVP)RST VHV(OVP)RST 430 443 465 Vinder and a second an	Auto-recovery Timer		t _{recovery}	3	4	5	S
Blanking time for line OVP reset BROWN-OUT AND LINE SENSING Brown-Out ON level (IC start pulsing) VHV increasing VHV increasing VHVBO(on) VHVBO(on) VHVBO(on) 101.5 108 114.5 Vide treasing VHVBO(on) Brown-Out OFF level (IC stops pulsing) VHV decreasing VHVBO(off) VHV pin voltage above which the sampling of ZCD is enabled low line VSampENLL VSampENLL VSampENHL V	Line OVP threshold	V _{HV} increasing		457	469	485	Vdc
Blanking time for line OVP reset BROWN-OUT AND LINE SENSING Brown-Out ON level (IC start pulsing) VHV increasing VHV increasing VHVBO(on) VHVBO(on) VHVBO(on) 101.5 108 114.5 Vide treasing VHVBO(on) Brown-Out OFF level (IC stops pulsing) VHV decreasing VHVBO(off) VHV pin voltage above which the sampling of ZCD is enabled low line VSampENLL VSampENLL VSampENHL V	HV pin voltage at which Line OVP is reset	V _{HV} decreasing	V _{HV(OVP)RST}	430	443	465	Vdc
Brown-Out ON level (IC start pulsing) VHV increasing VHVBO(on) VHVBO(on) 101.5 108 114.5 VG Brown-Out ON level (IC start pulsing) option 2 VHV increasing VHVBO(on)2 129.7 138 146.3 VG Brown-Out OFF level (IC stops pulsing) VHVBO(off) Prown-Out OFF level (IC stops pulsing) option 2 WHV decreasing VHVBO(off)2 121 129 137 VG HV pin voltage above which the sampling of ZCD is enabled low line WHV pin voltage above which the sampling of ZCD is vHV decreasing, low line VSampENLL VSampENHL VS	Blanking time for line OVP reset			15	25	35	ms
Brown-Out ON level (IC start pulsing) option 2	BROWN-OUT AND LINE SENSING						
Brown-Out OFF level (IC stops pulsing) VHV decreasing VHVBO(off) VHVBO(off) P2 P8 104 Vd Brown-Out OFF level (IC stops pulsing) option 2 VHV decreasing VHVBO(off)2 121 129 137 Vd HV pin voltage above which the sampling of ZCD is enabled low line HV pin voltage above which the sampling of ZCD is VHV decreasing, low line VsampENLL VsampENHL - 105 - VampENHL - 106 - VampENHL - 107 - VampENHL - Vamp	Brown-Out ON level (IC start pulsing)	V _{HV} increasing	V _{HVBO(on)}	101.5	108	114.5	Vdc
Brown-Out OFF level (IC stops pulsing) option 2 V _{HV} decreasing V _{HVBO(off)2} 121 129 137 V _{OUT}	Brown-Out ON level (IC start pulsing) option 2	V _{HV} increasing	V _{HVBO(on)2}	129.7	138	146.3	Vdc
HV pin voltage above which the sampling of ZCD is enabled low line HV pin voltage above which the sampling of ZCD is VHV decreasing, low line VsampENLL VsampENLL - 105 - 1	Brown-Out OFF level (IC stops pulsing)	V _{HV} decreasing	V _{HVBO(off)}	92	98	104	Vdc
enabled low line HV pin voltage above which the sampling of ZCD is V _{HV} decreasing, highline V _{sampENHL} - 105 - \frac{1}{2}	Brown-Out OFF level (IC stops pulsing) option 2	V _{HV} decreasing	V _{HVBO(off)2}	121	129	137	Vdc
HV pin voltage above which the sampling of ZCD is V_{HV} decreasing, highline $V_{sampENHL}$ - 105 - $V_{sampENHL}$		V _{HV} decreasing, low line	V _{sampENLL}	1	55	_	V
enabled highline	HV pin voltage above which the sampling of ZCD is enabled highline	V _{HV} decreasing, highline	V _{sampENHL}	-	105	_	V
ZCD sampling enable comparator hysteresis V _{HV} increasing V _{sampHYS} - 5 - V	ZCD sampling enable comparator hysteresis	V _{HV} increasing	V _{sampHYS}	-	5	_	V
BO comparators delay t _{BO(delay)} - 30 - μ	BO comparators delay		t _{BO} (delay)	-	30	_	μs
Brown-Out blanking time t _{BO(blank)} 15 25 35 m	Brown-Out blanking time		t _{BO(blank)}	15	25	35	ms

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Guaranteed by design.

TYPICAL CHARACTERISTICS

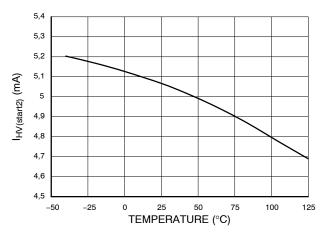


Figure 3. $I_{HV(start2)}$ vs. Temperature

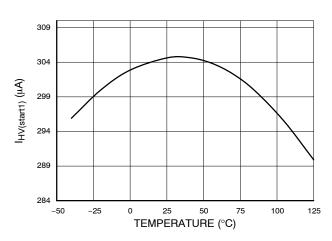


Figure 4. I_{HV(start1)} vs. Temperature

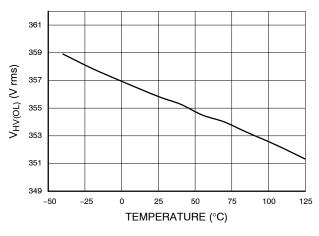


Figure 5. V_{HV(OL)} vs. Temperature

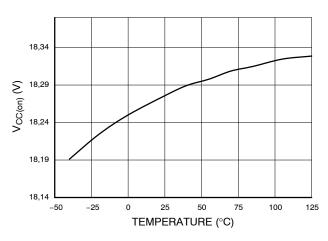


Figure 6. $V_{CC(on)}$ vs. Temperature

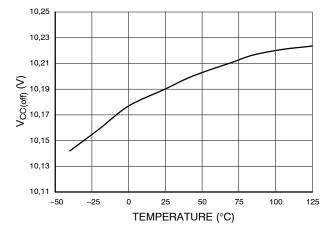


Figure 7. $V_{CC(off)}$ vs. Temperature

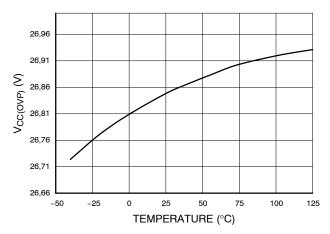


Figure 8. $V_{CC(OVP)}$ vs. Temperature

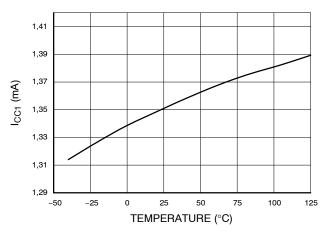


Figure 9. I_{CC1} vs. Temperature

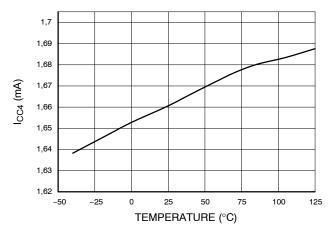


Figure 10. I_{CC4} vs. Temperature

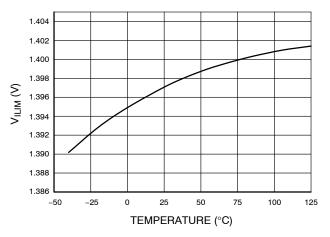


Figure 11. V_{ILIM} vs. Temperature

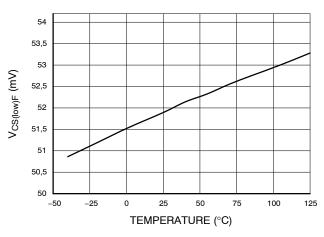


Figure 12. $V_{CS(low)F}$ vs. Temperature

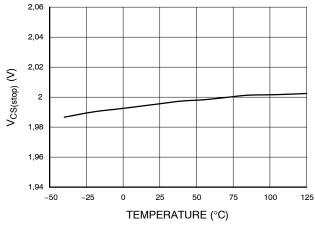


Figure 13. $V_{CS(stop)}$ vs. Temperature

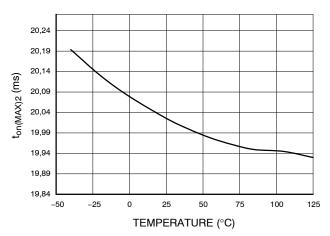


Figure 14. $t_{on(MAX)2}$ vs. Temperature

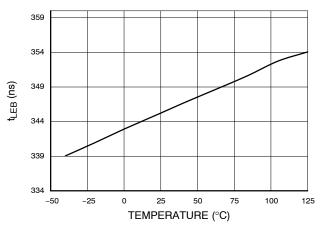


Figure 15. t_{LEB} vs. Temperature

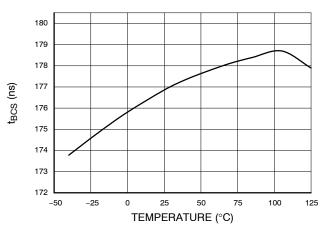


Figure 16. t_{BCS} vs. Temperature

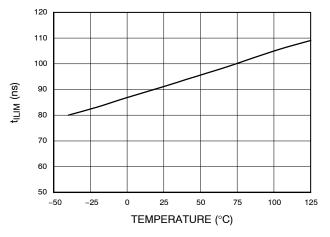


Figure 17. t_{ILIM} vs. Temperature

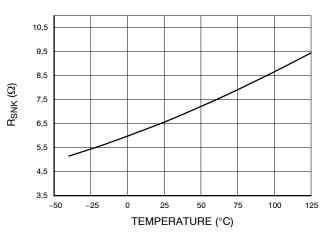


Figure 18. R_{SNK} vs. Temperature

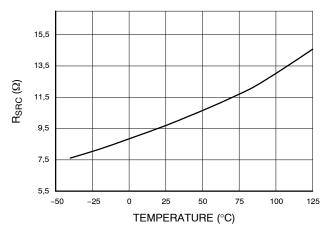


Figure 19. R_{SRC} vs. Temperature

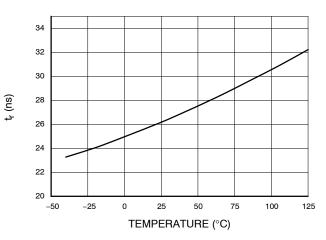


Figure 20. t_r vs. Temperature

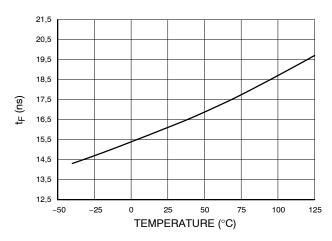


Figure 21. tf vs. Temperature

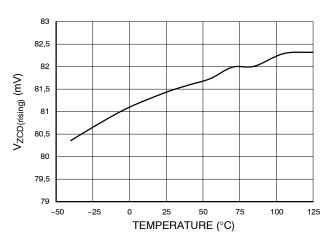


Figure 22. V_{ZCD(rising)} vs. Temperature

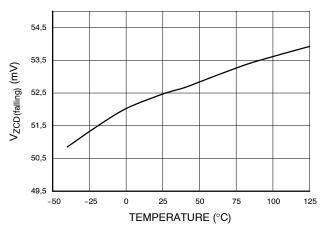


Figure 23. V_{ZCD(falling)} vs. Temperature

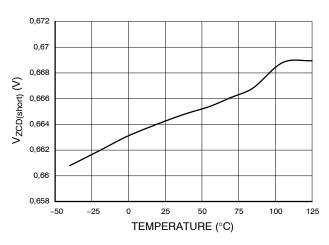


Figure 24. V_{ZCD(short)} vs. Temperature

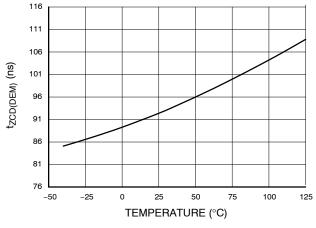


Figure 25. $t_{ZCD(dem)}$ vs. Temperature

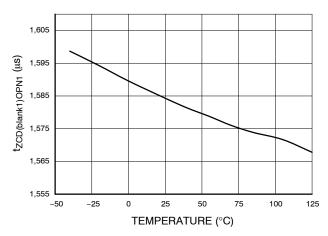


Figure 26. t_{ZCD(blank1)OPN1} vs. Temperature

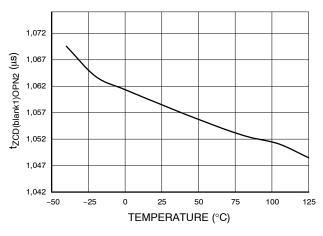


Figure 27. t_{ZCD(blank1)OPN2} vs. Temperature

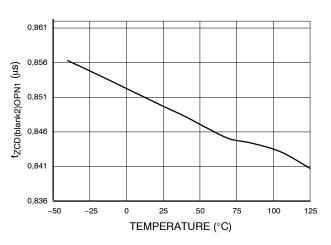


Figure 28. t_{ZCD(blank2)OPN1} vs. Temperature

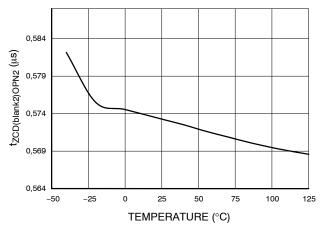


Figure 29. t_{ZCD(blank2)OPN2} vs. Temperature

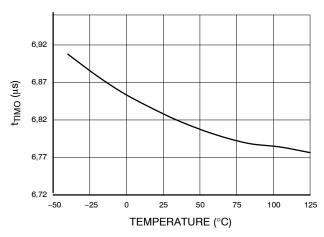
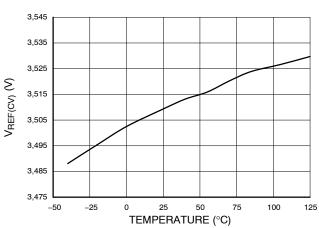
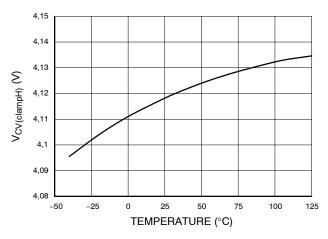
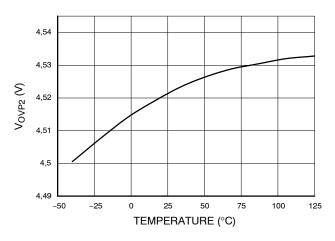


Figure 30. t_{TIMO} vs. Temperature

Figure 31. V_{REF/3} vs. Temperature


Figure 32. V_{REF(CV)} vs. Temperature

4,075
4,065
4,065
4,045
4,045
4,025
4,015
4,005
3,995
-50 -25 0 25 50 75 100 125
TEMPERATURE (°C)

Figure 33. $V_{CV(clampH)}$ vs. Temperature

Figure 34. V_{OVP1} vs. Temperature

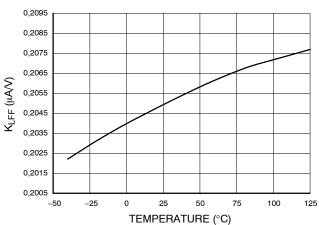
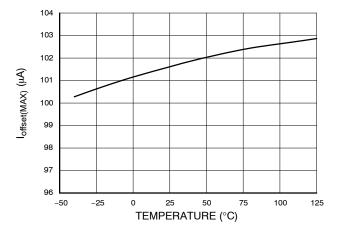



Figure 35. V_{OVP2} vs. Temperature

Figure 36. K_{LFF} vs. Temperature

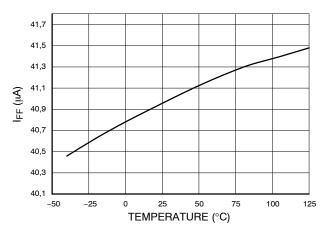
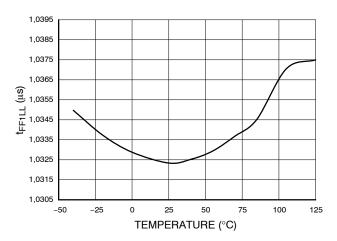
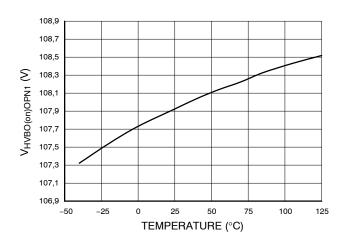



Figure 37. $I_{offset(MAX)}$ vs. Temperature


Figure 38. I_{FF} vs. Temperature

2,208
2,203
2,198
2,198
2,188
2,183
2,178
2,178
2,173
2,168
-50 -25 0 25 50 75 100 125
TEMPERATURE (°C)

Figure 39. t_{FF1LL} vs. Temperature

Figure 40. V_{REF(PFC)CLP} vs. Temperature

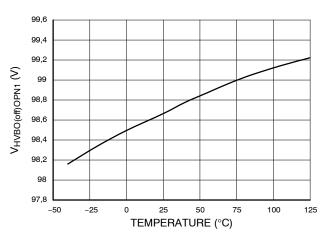
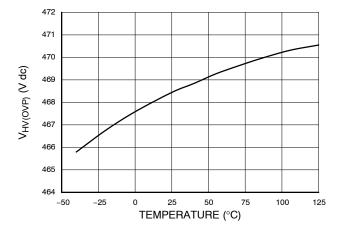



Figure 41. V_{HVBO(on)ONP1} vs. Temperature

Figure 42. V_{HVBO(off)} vs. Temperature

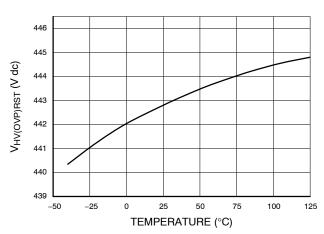


Figure 43. V_{HV(OVP)} vs. Temperature

Figure 44. V_{HV(OVP)RST} vs. Temperature

Application Information

The NCL30488 implements a current-mode architecture operating in quasi-resonant mode. Thanks to proprietary circuitry, the controller is able to accurately regulate the secondary side current and voltage of the fly-back converter without using any opto-coupler or measuring directly the secondary side current or voltage. The controller provides near unity power factor correction

- Quasi-Resonance Current-Mode Operation: implementing quasi-resonance operation in peak current-mode control, the NCL30488 optimizes the efficiency by switching in the valley of the MOSFET drain-source voltage. Thanks to an internal algorithm control, the controller locks-out in a selected valley and remains locked until the input voltage or the output current set point significantly changes.
- Primary Side Constant Current Control: thanks to a
 proprietary circuit, the controller is able to take into
 account the effect of the leakage inductance of the
 transformer and allows an accurate control of the
 secondary side current regardless of the input voltage and
 output load variation.
- Primary Side Constant Voltage Regulation: By monitoring the auxiliary winding voltage, it is possible to regulate accurately the output voltage. The output voltage regulation is typically within ±2%.
- Load Transient Compensation: Since PFC has low loop bandwidth, abrupt changes in the load may cause excessive over or under-shoot. The slow Over Voltage Protection contains the output voltage when it tends to become excessive. In addition, the NCL30488 speeds up the constant voltage regulation loop when the output voltage goes below 85% of its regulation level.
- Power Factor Correction: A proprietary concept allows achieving high power factor correction and low THD while keeping accurate constant current and constant voltage control.
- *Line Feed-forward:* allows compensating the variation of the output current caused by the propagation delay.
- *V_{CC} Over Voltage Protection*: if the V_{CC} pin voltage exceeds an internal limit, the controller shuts down and waits 4 seconds before restarting pulsing.
- Fast Over Voltage Protection: If the voltage of ZCD pin exceeds 130% of its regulation level, the controller shuts down and waits 4 s before trying to restart.
- Brown-Out: the controller includes a brown-out circuit
 which safely stops the controller in case the input voltage
 is too low. The device will automatically restart if the line
 recovers.
- Cycle-by-cycle peak current limit: when the current sense voltage exceeds the internal threshold V_{ILIM}, the MOSFET is turned off for the rest of the switching cycle.
- Winding Short-Circuit Protection: an additional comparator senses the CS signal and stops the controller

- if V_{CS} reaches 1.5 x V_{ILIM} (after a reduced LEB of t_{BCS}). This additional comparator is enabled only during the main LEB duration t_{LEB} , for noise immunity reason.
- Output Under Voltage Protection: If a too low voltage is applied on ZCD pin for 90 ms time interval, the controllers assume that the output or the ZCD pin is shorted to ground and shutdown. After waiting 4 seconds, the IC restarts switching.
- Thermal Shutdown: an internal circuitry disables the gate drive when the junction temperature exceeds 150°C (typically). The circuit resumes operation once the temperature drops below approximately 140°C.

POWER FACTOR AND CONSTANT CURRENT CONTROL

The NCL30488 embeds an analog/digital block to control the power factor and regulate the output current by monitoring the ZCD, CS and HV pin voltages (signals V_{ZCD}, V_{HV_DIV}, V_{CS}). This circuit generates the current setpoint signal and compares it to the current sense signal to turn the MOSFET off. The HV pin provides the sinusoidal reference necessary for shaping the input current. The obtained current reference is further modulated so that when averaged over a half line period, it is equal to the output current reference (V_{REFX}). The modulation and averaging process is made internally by a digital circuit. If the HV pin properly conveys the sinusoidal shape, power factor will be close to 1. Also, the Total Harmonic Distortion (THD) will be low especially if the output voltage ripple is small.

$$I_{OUT} = \frac{V_{REF}}{2N_{sp}R_{sense}}$$
 (eq. 1)

Where:

- N_{sp} is the secondary to primary transformer turns ratio: $N_{sp} = N_S / N_P$
- R_{sense} is the current sense resistor
- V_{REFX} is the output current reference: V_{REFX} = V_{REF} if no dimming

The output current reference (V_{REFX}) is V_{REF} unless the controller operates in constant voltage mode.

PRIMARY SIDE CONSTANT VOLTAGE CONTROL

The auxiliary winding voltage is sampled internally through the ZCD pin.

A precise internal voltage reference $V_{REF(CV)}$ sets the voltage target for the CV loop.

The sampled voltage is applied to the negative input of the constant voltage (CV) operational transconductance amplifier (OTA) and compared to V_{REFCV}.

A type 2 compensator is needed at the CV OTA output to stabilize the loop. The COMP pin voltage modify the the output current internal reference in order to regulate the output voltage.

When $V_{COMP} \ge 4 \text{ V}$, $V_{REFX} = V_{REF}$. When $V_{COMP} < 0.9 \text{ V}$, $V_{REFX} = 0 \text{ V}$.

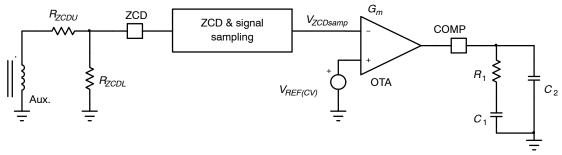


Figure 45. Constant Voltage Feedback Circuit

Secondary Side Regulation Compatible

The NCL30488 is able to support secondary–side regulation as well. The controller features an option to provide a pullup resistor R_{pullup} on COMP pin instead of the CV OTA output. This allows connecting directly an optocoupler collector and properly biases it. The internal voltage biasing R_{pullup} is around 5 V.

In secondary side regulation, the slow and fast OVP on ZCD pin are still active thus providing an additional over voltage protection. In this case, the ZCD pin resistors should be calculated to trigger $V_{\rm OVP2}$ at the output voltage of interest.

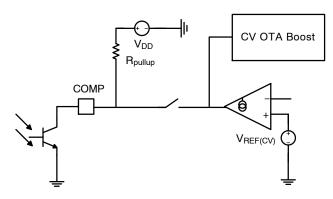


Figure 46. COMP Pin Configuration for Secondary Side Regulation

STARTUP PHASE (HV STARTUP)

It is generally requested that the LED driver starts to emit light in less than 1 s and possibly within 300 ms. It is challenging since the start–up consists of the time to charge the V_{CC} capacitor and that necessary to charge the output capacitor until sufficient current flows into the LED string. This second phase can be particularly long in dimming cases where the secondary current is a portion of the nominal one.

The NCL30488 features a high voltage startup circuit that allows charging VCC pin capacitor very fast.

When the power supply is first connected to the mains outlet, the internal current source is biased and charges up the V_{CC} capacitor. When the voltage on this V_{CC} capacitor reaches the $V_{CC(on)}$ level, the current source turns off. At this time, the controller is only supplied by the V_{CC} capacitor, and the auxiliary supply should take over before V_{CC} collapses below $V_{CC(off)}$.

The HV startup circuitry is made of two startup current levels, $I_{HV(start1)}$ and $I_{HV(start1)}$. This helps to protect the controller against short–circuit between V_{CC} and GND. At power–up, as long as V_{CC} is below $V_{CC(TH)}$, the source delivers $I_{HV(start1)}$ (around 300 μ A typical). Then, when V_{CC} reaches $V_{CC(TH)}$, the source smoothly transitions to $I_{HV(start2)}$ and delivers its nominal value. As a result, in case of short–circuit between V_{CC} and GND occurring at high line (V_{in} = 305 V rms), the maximum power dissipation will be 431 x 300 μ = 130 mW instead of 1.5 W if there was only one startup current level.

To speed-up the output voltage rise, the following is implemented:

- The digital OTA output is increased until V_{REF(PFC)} signal reaches V_{REFX}. Again, this is to speed-up the control signal rise to their steady state value.
- At the beginning of each operating phase of a V_{CC} cycle, the digital OTA output is set to 0. Actually, the digital OTA output is set to 0 in the case of a cold start-up or in the case of a start-up sequence following an operation interruption due to a fault. On the other hand, if the V_{CC} hiccups just because the system fails to start-up in one V_{CC} cycle, the digital OTA output is not reset to ease the second (or more) attempt.
- If the load is shorted, the circuit will operate in hiccup mode with V_{CC} oscillating between V_{CC(off)} and V_{CC(on)} until the output under voltage protection (UVP) trips. UVP is triggered if the ZCD pin voltage does not exceed V_{ZCD(short)} within a 90 ms operation of time. This indicates that the ZCD pin is shorted to ground or that an excessive load prevents the output voltage from rising.

HV Startup Power Dissipation

At high line (305 V rms and above) the power dissipated by the HV startup in case of fault becomes high. Indeed, in case of fault, the NCL30488 is directly supplied by the HV rail. The current flowing through the HV startup will heat the controller. It is highly recommended adding enough copper around the controller to decrease the $R_{\theta JA}$ of the controller.

Adding a minimum pad area of 215 mm² of 35 μ m copper (1 oz) drops the R_{θ JA} to around 120°C/W (no air flow, R_{θ JA} measured at ADIM pin)

The PCB layout shown in Figure 47 is a layout example to achieve low $R_{\theta JA}$.

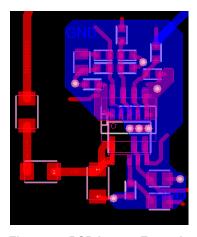


Figure 47. PCD Layout Example

The application note *ANDXXXX* gives more details about strategies to decrease the power dissipation of the HV startup circuit.

Cycle-by-Cycle Current Limit

When the current sense voltage exceeds the internal threshold $V_{\rm ILIM}$, the MOSFET is turned off for the rest of the switching cycle.

Winding and Output Diode Short-Circuit Protection

In parallel to the cycle-by-cycle sensing of the CS pin, another comparator with a reduced LEB (t_{BCS}) and a threshold of ($V_{CS(stop)} = 140\% \ x \ V_{ILIM}$) monitors the CS pin to detect a winding or an output diode short circuit. The controller shuts down if it detects 4 consecutives pulses during which the CS pin voltage exceeds $V_{CS(stop)}$.

The controller goes into auto-recovery mode.

Valley Lockout

Quasi-Square wave resonant systems have a wide switching frequency excursion. The switching frequency increases when the output load decreases or when the input voltage increases. The switching frequency of such systems must be limited.

The NCL30488 changes valley as V_{REFX} decreases and as the input voltage increases and as the output current setpoint is varied during dimming. This limits the frequency excursion.

By default, when the output current is not dimmed, the controller operates in the first valley at low line and in the second valley at high line.

(prog. option to have the operating valley incremented by 1 at high line for better I_{out} control at 305 V rms.)

Table 1. VALLEY SELECTION

			V _{HV_DIV} Volt	tage for Va	lley Change				
	V _{REFX} value at which the Controller Changes Valley (<i>l_{out}</i> Decreasing)			2.3 V	HL	5 V	V _{REFX} Value at Which the Controller Changes Valley(<i>l_{out}</i> Increasing)		
	100%		1 st		2 nd (3 rd)		100%		
တ္သ	80% σ		2 nd		3 rd (4 th)		80%		
l _{out} decreases	65%		3 rd		4 th (5 th)		- 65% - 50% - 35%		
decr	50%		4 th		5 th (6 th)		50% 50% p		
lout	35%		5 th		6 th (7 th)		• • • • • • • • • • • • • • • • • • •		
1	25% · 0%		FF mode		FF mode		25% 0%		
		0	LL	2.3 V	HL	5 V			
		Inte	ernal V _{HV DIV}	Voltage fo	or Valley Cha	- inge			

Zero Crossing Detection Block

The ZCD pin allows detecting when the drain-source voltage of the power MOSFET reaches a valley.

A valley is detected when the ZCD pin voltage crosses below the 55 mV internal threshold.

At startup or in case of extremely damped free oscillations, the ZCD comparator may not be able to detect the valleys. To avoid such a situation, Optimus Prime features a Time-Out circuit that generates pulses if the voltage on ZCD pin stays below the 55 mV threshold for $6.5 \,\mu s$.

The Time-out also acts as a substitute clock for the valley detection and simulates a missing valley in case of too damped free oscillations.

At startup, the output voltage reflected on the auxiliary winding is low. Because of the ZCD resistor bridge setting the constant voltage regulation target, the voltage on the ZCD pin is very low and the ZCD comparator might be unable to detect the valleys. In this condition, setting the DRV Latch with the 6.5 µs time–out leads to a continuous conduction mode operation (CCM) at the beginning of the soft–start. This CCM operation only last a few cycles until the voltage on ZCD pin becomes high enough and trips the ZCD comparator.

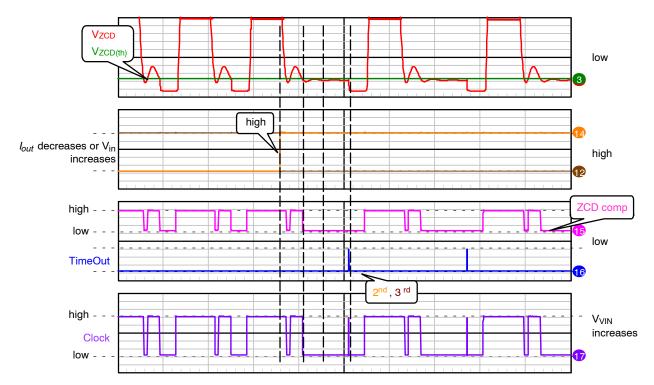


Figure 48. Valley Detection and Time-out Chronograms

If the ZCD pin or the auxiliary winding happen to be shorted the time-out function would normally make the controller keep switching and hence lead to improper regulation of the LED current.

The Under Voltage Protection (UVP) is implemented to avoid these scenarios: a secondary timer starts counting when the ZCD voltage is below the $V_{ZCD(short)}$ threshold. If this timer reaches 90 ms, the controller detects a fault and enters the auto-recovery fault mode.

ZCD Over Voltage Protection

Because of the power factor correction, it is necessary to set the crossover frequency of the CV loop very low (target 10 Hz, depending on power stage phase shift). Because the loop is slow, the output voltage can reach high value during startup or during an output load step. It is necessary to limit the output voltage excursion. For this, the NCL30488 features a slow OVP and a fast OVP on ZCD pin.

Slow OVP

If ZCD voltage exceeds V_{OVP1} for 4 consecutive switching cycles, the controller stops switching during 1.4 ms. The PFC loop is not reset. After 1.4 ms, the controller initiates a new DRV pulse to refresh ZCD sampling voltage. If V_{ZCD} is still too high ($V_{ZCD} > 115\%$ $V_{REF(CV)}$), the controller continues to switch with a 1.4 ms period. The controller resumes its normal operation when $V_{ZCD} < 115\%$ $V_{REF(CV)}$.

During slow OVP, the peak current setpoint is COMP pin voltage scaled down by a fixed ratio.

Fast OVP

If ZCD voltage exceeds V_{OVP2} (130% of $V_{REF(CV)}$) for 4 consecutive switching cycles (slow OVP not triggered) or for 2 switching cycles if the slow OVP has already been triggered, the controller detects a fault and starts the auto-recovery fault mode (cf: Fault Management Section)

Line Feedforward

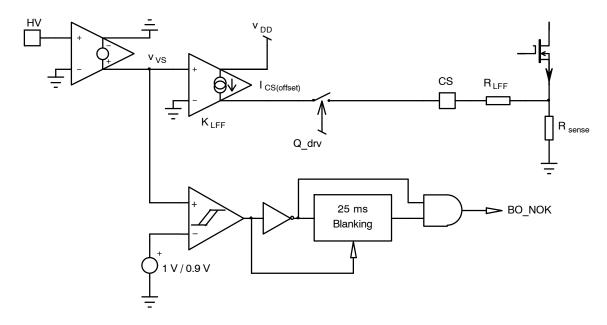


Figure 49. Line Feed-Forward and Brown-out Schematic

The line voltage is sensed by the HV pin and converted into a current. By adding an external resistor in series between the sense resistor and the CS pin, a voltage offset proportional to the line voltage is added to the CS signal. The offset is applied only during the MOSFET on–time in order to not influence the detection of the leakage inductance reset.

The offset is always applied even at light load in order to improve the current regulation at low output load.

Brown-out

In order to protect the supply against a very low input voltage, the controller features a brown-out circuit with a fixed ON/OFF threshold. The controller is allowed to start if a voltage higher than $V_{HVBO(on)}$ is applied to the HV pin and shuts-down if the HV pin voltage decreases and stays

below $V_{HVBO(off)}$ for 25 ms typical. Exiting a brown-out condition overrides the hiccup on V_{CC} (V_{CC} does not wait to reach $V_{CC(off)}$) and the IC immediately goes into startup mode.

An option with higher brown–out levels is also available (see ordering table and electricals parameters)

Line OVP

In order to protect the power supply in case of too high input voltage, the NCL30488 features a line over voltage protection. When the voltage on HV pin exceeds $V_{HV(OVP)}$ the controller stops switching; V_{CC} hiccups.

When V_{HV} becomes lower than $V_{HV(OVP)RST}$ for more than 25 ms, the controller initiates a clean startup sequence and re–starts switching.

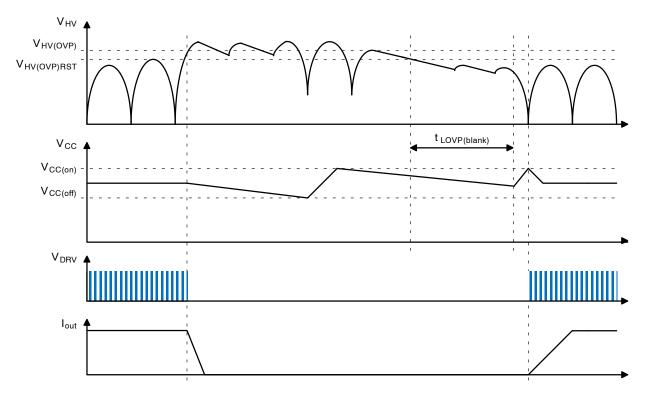


Figure 50. Line OVP Chronograms

Protections

The circuit incorporates a large variety of protections to make the LED driver very rugged.

Among them, we can list:

• Fault of the GND connection

If the GND pin is properly connected, the supply current drawn from the positive terminal of the V_{CC} capacitor, flows out of the GND pin to return to the negative terminal of the V_{CC} capacitor. If the GND pin is not connected, the circuit ESD diodes offer another return path. The accidental non connection of the GND pin can hence be detected by detecting that one of this ESD diode is conducting. Practically, the ESD diode of CS pin is monitored. If such a fault is detected for 200 μ s, the circuit stops generating DRV pin.

• Output short circuit situation (Output Under Voltage Protection)

Overload is detected by monitoring the ZCD pin voltage: if it remains below $V_{ZCD(short)}$ for 90 ms, an output short circuit is detected and the circuit stops generating pulses for 4 s. When this 4 s delay has elapsed, the circuit attempts to restart.

- ZCD pin incorrect connection:
 - If the ZCD pin grounded, the circuit will detect an output short circuit situation when 90 ms delay has elapsed.
 - A 200 kΩ resistor pulls down the ZCD pin so that the output short circuit detection trips if the ZCD pin is not connected (floating).

Winding or Output Diode Short Circuit protection
 The circuit detects this failure when 4 consecutive DRV pulses occur within which the CS pin voltage exceeds (V_{CS(stop)} = 140% x V_{ILIM}). In this case, the controller enters auto-recovery mode (4-s operation interruption between active bursts).

• V_{CC} Over Voltage Protection

The circuit stops generating pulses if the V_{CC} exceeds $V_{CC(OVP)}$ and enters auto-recovery mode. This feature protects the circuit if output LEDs happen to be disconnected.

ZCD fast OVP

If ZCD voltage exceeds $V_{ZCD(OVP2)}$ for 4 consecutive switching cycles (slow OVP not triggered) or for 2 switching cycles if the slow OVP has already been triggered, the controller detects a fault and enters auto-recovery mode (4 s operation interruption between active bursts).

• Die Over Temperature (TSD)

The circuit stops operating if the junction temperature (T_J) exceeds 150°C typically. The controller remains off until T_J goes below nearly 130°C.

• Brown-Out Protection (BO)

The circuit prevents operation when the line voltage is too low to avoid an excessive stress of the LED driver. Operation resumes as soon as the line voltage is high enough and $V_{\rm CC}$ is higher than $V_{\rm CC(on)}$.

• CS pin short to ground

The CS pin is checked at start–up (cold start–up or after a brown–out event). A current source ($I_{cs(short)}$) is applied to the pin and no DRV pulse is generated until the CS pin exceeds $V_{cs(low)}$. $I_{cs(short)}$ and $V_{cs(low)}$ are 500 μA and 60 mV typically (V_{CS} rising). The typical minimum impedance to be placed on the CS pin for operation is then 120 Ω . In practice, it is recommended to place more than

 $250\,\Omega$ to take into account possible parametric deviations. Also, along the circuit operation, the CS pin could happen to be grounded. If it is grounded, the MOSFET conduction time is limited by the 20 μs maximum on–time. If such an event occurs, a new pin impedance test is made.

• Line overvoltage protection (see <u>Line OVP</u> section)

ORDERING TABLE OPTION

	Maxim	num Dead	d-time	V _F	EF	Max. O	n-time	ZCD BI	anking	Val Trans from L	sition	Standb	y Mode	Line F Dete	Range ector
OPN # NCL30488	250 μs	687 μs	1.4 ms	200 mV	333 mV	20 μs	33 μs	1 μs	1.5 μs	1 st to 2 nd	1 st to 3 rd	On	Off	On	Off
NCL30488A2		х			х	х		х		х			х	х	
NCL30488A3		х			х	х		х		х			х	х	
NCL30488A4		х			Х	Х		х		Х			Х	Х	

	Line	OVP	Frozen Peak Current During Standby Mode V _{CS(SBY)}			Brown-o	ut Levels	COMP Pin R _{pullup} (CV OTA output disconnected)	
OPN # NCL30488	On	Off	380 mV	330 mV	280 mV	On: 108 V Off: 98 V	On: 138 V Off: 129 V	On	Off
NCL30488A2	х				NA		х		х
NCL30488A3	х				NA	х			х
NCL30488A4	х				NA	х		×	

ORDERING INFORMATION

Device	Marking	Package type	Shipping [†]
NCL30488A2	L30486A2	SOIC7 – P7 COMP VHV PBFH (Pb-Free)	2500 / Tape & Reel
NCL30488A3	L30488A3	SOIC7 – P7 COMP VHV PBFH (Pb-Free)	2500 / Tape & Reel
NCL30488A4	L30488A4	SOIC7 – P7 COMP VHV PBFH (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-7 CASE 751U ISSUE E

DATE 20 OCT 2009

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

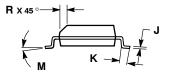
 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A AND B ARE DATUMS AND T IS A DATUM SURFACE.

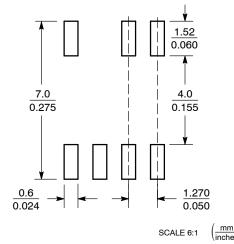
 4. DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

	MILLIN	IETERS	INCHES		
DIM	MIN	MIN MAX		MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

GENERIC MARKING DIAGRAM


XXX = Specific Device Code = Assembly Location Α

= Wafer Lot L Υ = Year = Work Week W = Pb-Free Package


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

B S $|\Phi|$ 0.25 (0.010) M B M G

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON12199D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-7		PAGE 1 OF 2				

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-7 CASE 751U ISSUE E

DATE 20 OCT 2009

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. 7. NOT USED 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. NOT USED 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. NOT USED 8. SOURCE, #1
STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. NOT USED 8. COMMON CATHODE	5. 6. 7. NOT USED	STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. 7. NOT USED 8. SOURCE
STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE	STYLE 8: PIN 1. COLLECTOR (DIE 1) 2. BASE (DIE 1) 3. BASE (DIE 2)	STYLE 9: PIN 1. EMITTER (COMMON) 2. COLLECTOR (DIE 1) 3. COLLECTOR (DIE 2)
4. GROUND 5. DRAIN 6. GATE 3 7. NOT USED 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR (DIE 1) 2. BASE (DIE 1) 3. BASE (DIE 2) 4. COLLECTOR (DIE 2) 5. COLLECTOR (DIE 2) 6. EMITTER (DIE 2) 7. NOT USED 8. COLLECTOR (DIE 1)	5. EMITTER (COMMON) 6. BASE (DIE 2) 7. NOT USED 8. EMITTER (COMMON)

DOCUMENT NUMBER:	98AON12199D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-7		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales