

Integrated Driver and MOSFET

NCP252163

The NCP252163 integrates a MOSFET driver, high-side MOSFET and low-side MOSFET into a single package.

The driver and MOSFETs have been optimized for high-current DC-DC buck power conversion applications. The NCP252163 integrated solution greatly reduces package parasitics and board space compared to a discrete component solution.

Features

- Capable of Average Currents up to 60 A
- Capable of Switching at Frequencies up to 2 MHz
- Compatible with 3.3 V or 5 V PWM Input
- Responds Properly to 3-Level PWM Inputs
- Option for Zero Cross Detection with 3-Level PWM
- Internal Bootstrap Diode
- Undervoltage Lockout
- Supports Intel[®] Power State 4
- Thermal Warning Output
- Thermal Shutdown
- This is a Pb-Free Device

Applications

- Desktop and All-in-One Computers, V-Core and Non-V-Core DC-DC Converters
- High-Current DC-DC Point-of-Load Converters
- Small Form-Factor Voltage Regulator Modules

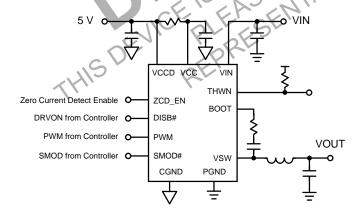
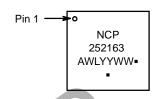



Figure 1. Application Schematic

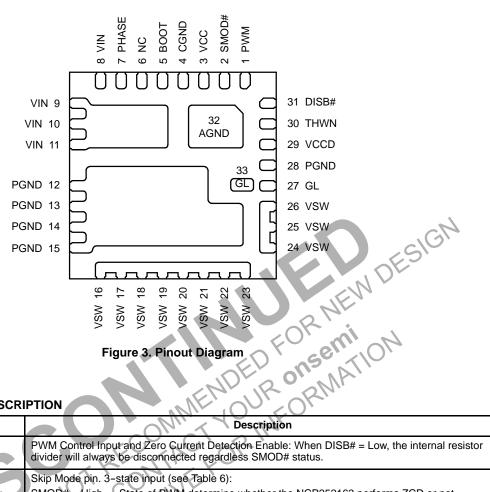
PQFN31 5X5, 0.5P CASE 483BR

MARKING DIAGRAM

NCP252163 = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
= Pb-Free Package


(Note: Microdot may be in either location)

ORDERING INFORMATION


Device	Package	Shipping [†]
NCP252163MNTWG	PQFN31 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

BLOCK DIAGRAM

PINOUT DIAGRAM

Table 1. PIN LIST AND DESCRIPTION

Pin No.	Symbol	Description
1	PWM	PWM Control Input and Zero Current Detection Enable: When DISB# = Low, the internal resistor divider will always be disconnected regardless SMOD# status.
2	SMOD#	Skip Mode pin. 3-state input (see Table 6): SMQD# = High → State of PWM determine whether the NCP252163 performs ZCD or not. SMQD# = Mid → Connects PWM to internal resistor divider placing a bias voltage on PWM pin. Otherwise, logic is equivalent to SMQD# in the high state. SMQD# = Low → Placing PWM into mid – state pulls GH and GL low without delay. There is an internal pull-up resistor to VCC on this pin
3	VCC	Control Power Supply Input
4, 32	CGND, AGND	Signal Ground (pin 4 and pad 32 are internally connected)
5	BOOT	Bootstrap Voltage
6	NC	Open pin (not used)
7	PHASE	Bootstrap Capacitor Return
8-11	VIN	Conversion Supply Power Input
12-15, 28	PGND	Power Ground
16-26	VSW	Switch Node Output
27, 33	GL	Low Side FET Gate Access (pin 27 and pad 33 are internally connected)
29	VCCD	Driver Power Supply Input
30	THWN	Thermal warning indicator. This is an open-drain output. When the temperature at the driver die reaches T _{THWN} , this pin is pulled low.
31	DISB#	Output disable pin. When this pin is pulled to a logic high level, the driver is enabled. There is an internal pull-down resistor on this pin.

Table 2. ABSOLUTE MAXIMUM RATINGS (Electrical Information - all signals referenced to PGND unless noted otherwise.)

Pin Name / Parameter	Min	Max	Unit
VCC, VCCD	-0.3	6.5	V
VIN	-0.3	25	V
BOOT (DC)	-0.3	30	V
BOOT (< 20 ns)	-0.3	35	V
BOOT to PHASE (DC)	-0.3	6.5	V
VSW, PHASE (DC)	-0.3	25	V
VSW, PHASE (< 20 ns)	-5	30	V
All Other Pins	-0.3	V _{VCC} + 0.3	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance (under onsemi Thermal Board)	$\theta_{\sf JA}$	12.4	°C/W
	θ_{J-PCB}	1.8	°C/W
Operating Junction Temperature Range (Note 1)	Τ _λ	-40 to +150	°C
Operating Ambient Temperature Range	TA	-40 to +125	°C
Maximum Storage Temperature Range	T _{STG}	-55 to +150	°C
Moisture Sensitivity Level	MSL	90,00	·

- 1. The maximum package power dissipation must be observed.
- 2. JESD 51-5 (1S2P Direct-Attach Method) with 0 LFM.
- 3. JESD 51-7 (1S2P Direct—Attach Method) with 0 LFM.

Table 4. RECOMMENDED OPERATING RANGES

Moisture Sensitivity Level		MSL	1		-	
1. The maximum package power dissipation must be observed. 2. JESD 51-5 (1S2P Direct – Attach Method) with 0 LFM. 3. JESD 51-7 (1S2P Direct – Attach Method) with 0 LFM. Table 4. RECOMMENDED OPERATING RANGES						
Parameter	Pin Name	Conditions	Min	Тур	Max	Unit
Supply Voltage Range	VCC, VCCD	Br 111, CO.	4.5	5.0	5.5	V
BOOT to PHASE	V _{BOOT} -PHASE	100 JE	4.1	4.6	5.1	V
Conversion Voltage	VIN		4.5	12	16	V
Continuous Output Current	EEEA	$F_{SW} = 1 \text{ MHz}, V_{IN} = 12 \text{ V}, V_{OUT} = 1.0 \text{ V}, T_A = 25^{\circ}\text{C}$	-	-	55	А
OEVI	PLEE	F_{SW} = 300 kHz, V_{IN} = 12 V, V_{OUT} = 1.0 V, T_A = 25°C	-	-	60	А
Peak Output Current	OF.	Duration = 5 μs, Period = 10 ms	-	_	85	Α
Junction Temperature	K.		-40	-	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 5. ELECTRICAL CHARACTERISTICS

 $(V_{VCC} = V_{VCCD} = 5.0 \text{ V}, V_{VIN} = 12 \text{ V}, V_{DISB\#} = 2.0 \text{ V}, C_{VCCD} = C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCC} = 0.1 \text{ F unless specified otherwi$ temperature range $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$ unless noted otherwise, and are guaranteed by test, design or statistical correlation.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
VCC SUPPLY CURRENT		•			-	
Operating		DISB# = 5 V, PWM = 400 kHz	-	1	2	mA
No switching		DISB# = 5 V, PWM = 0 V	-	-	2	mA
Disabled		DISB# = 0 V, SMOD# = VCC	-	0.4	1	μΑ
		DISB# = 0 V, SMOD# = GND	-	6	15	μΑ
UVLO Start Threshold	V _{UVLO}	VCC rising	2.89	-	3.37	V
UVLO Hysteresis			150	-	-	mV

Table 5. ELECTRICAL CHARACTERISTICS (continued)

 $(V_{VCC} = V_{VCCD} = 5.0 \text{ V}, V_{VIN} = 12 \text{ V}, V_{DISB\#} = 2.0 \text{ V}, C_{VCCD} = C_{VCC} = 0.1 \text{ F unless specified otherwise}) \text{ Min/Max values are valid for the temperature range } -40^{\circ}\text{C} \leq T_{J} \leq 125^{\circ}\text{C} \text{ unless noted otherwise, and are guaranteed by test, design or statistical correlation.})$

Variable No Switching	Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Disabled DISB# = 0 V	VCCD SUPPLY CURRENT						
DISB# = 5 V, PWM = 400 kHz	Enabled, No Switching		DISB# = 5 V, PWM = 0 V	-	175	300	μΑ
Input Resistance	Disabled		DISB# = 0 V	-	0.4	1	μΑ
Input Resistance	Operating		DISB# = 5 V, PWM = 400 kHz	-	-	30	mA
Upper Threshold	DISB# INPUT			•			
Lower Threshold	Input Resistance		To Ground	-	467	-	kΩ
Hysteresis	Upper Threshold	V _{UPPER}		-	-	2.0	V
Enable Delay Time	Lower Threshold	V _{LOWER}		0.8	-	-	V
When VSW responds to PVML State	Hysteresis		V _{UPPER} - V _{LOWER}	200	-	-	mV
SMOD# INPUT SMOD# Input Voltage High	Enable Delay Time				-	50	μS
SMOD# Input Voltage High VSMOD.HI 2,66 - - V	Disable Delay Time				21	50	ns
SMOD# Input Voltage Mid-state VSMOD#_MID VSMOD#_MID VSMOD#_LO VSMOD# Input Voltage Low VSMOD_LO VSMOD#_DOWN Pdill-up resistance to VCC C	SMOD# INPUT			1.	10.		
SMOD# Input Voltage Mid−state V _{SMOD#} MID 1.4	SMOD# Input Voltage High	V _{SMOD_HI}		2.65	-	-	V
SMOD# Input Voltage Low V _{SMOD} _LO Pdil-up resistance to VCC - 455 - kΩ SMOD# Propagation Delay, Falling T _{SMOD#-PD_R} SMOD# Elow to GE = 90%, PWM = MID SMOD#-PD_R SM	SMOD# Input Voltage Mid-state	V _{SMOD#_MID}	-2	1.4	-	2.0	V
SMOD# Propagation Delay, Falling TsMoD#_PD_F SMOD# = Low to GL = 90%, PVM = MID 34 42 ns SMOD# Propagation Delay, Rising TsMoD#_PD_R SMOD#_= High for GL = 10%, - 22 30 ns Rising SMOD# = High for GL = 10%, - 22 30 ns Rising SMOD# = High for GL = 10%, - 22 30 ns Rising SMOD# = High for GL = 10%, - 22 30 ns Rising SMOD# = High for GL = 10%, - 22 30 ns SMOD# = NsMOD#_HIGH SMOD#_HIGH SMOD#_	SMOD# Input Voltage Low		\$0,	-mi	1	0.7	V
Falling SMOD# Propagation Delay, Rising PWM = MID SMOD# = High for GL = 10%.	SMOD# Input Resistance	R _{SMOD} #_DOWN	Pull-up resistance to VCC	6-4	455	-	kΩ
PWM NIPUT Input Voltage High V _{PWM_HI} 2.65 - - V Input Mid-state Voltage V _{PWM_MID} 1.4 - 2.1 V Input Low Voltage V _{PWM_LD} - - 0.7 V Input Resistance R _{PWM_HIZ} SMOD# = V _{SMOD#_LO} or V _{SMOD#_HI} 10 - - MΩ Input Resistance R _{PWM_BIAS} SMOD# = V _{SMOD#_MID} - 68 - kΩ PWM Input Bias Voltage V _{PWM_BIAS} SMOD# = V _{SMOD#_MID} - 1.7 - V Non-overlap Delay, Leading Edge T _{NOL_L} GL Falling = 1 V to Gh-VSW Rising = 1 V - 13 - ns Non-overlap Delay, Trailing Edge T _{NOL_T} GH-VSW Falling = 1 V to GL Rising = 1 V - 12 - ns PWM Propagation Delay, Rising T _{PWM_PD_R} PWM = High to GL = 90% - 13 35 ns PWM Propagation Delay, Mid-to-Low T _{PWM_EXIT_L} PWM = Mid-to-Low to GL = 10% - 14 25 ns		T _{SMOD#_PD_F}	SMOD# = Low to GL = 90%, PWM = MID	WB,	34	42	ns
Input Voltage High		T _{SMOD#_PD_R}		-	22	30	ns
Input Mid-state Voltage	PWM INPUT		0000				
Input Low Voltage	Input Voltage High	V _{PWM_HI}	TAP EO,	2.65	-	-	V
Input Resistance	Input Mid-State Voltage	V _{PWM_MID}	OLIE,	1.4	=	2.1	V
Input Resistance	Input Low Voltage	V _{PWM_LO}		-	=	0.7	V
PWM Input Bias Voltage V _{PWM_BIAS} SMOD# = V _{SMOD#_MID} - 1.7 - V Non-overlap Delay, Leading Edge TNOL_L GL Falling = 1 V to Gh-VSW Rising = 1 V to Gh-VSW Rising = 1 V to GL - 13 - ns Non-overlap Delay, Trailing Edge T _{NOL_T} GH-VSW Falling = 1 V to GL Rising = 1 V to GL - 12 - ns PWM Propagation Delay, Rising T _{PWM,PD_R} PWM = High to GL = 90% - 13 35 ns PWM Propagation Delay, Falling T _{PWM,PD_F} PWM = Low to SW = 90% - 47 52 ns Exiting PWM Mid-state Propagation Delay, Mid-to-Low T _{PWM_EXIT_L} PWM = Mid-to-Low to GL = 10% - 14 25 ns Exiting PWM Mid-state Propagation Delay, Mid-to-High T _{PWM_EXIT_H} PWM = Mid-to-High to SW = 10% - 13 25 ns Exiting PWM Mid-state Propagation Delay, Mid-to-High T _{PWM_EXIT_H} PWM = Mid-to-High to SW = 10% - 13 25 ns ZCD FUNCTION Zero Cross Detect Threshold V _{ZCD} - - - -	Input Resistance		$SMOD# = V_{SMOD\#_LO} \text{ or } V_{SMOD\#_HI}$	10	-	-	$M\Omega$
Non-overlap Delay, Leading Edge T _{NOL_L} GL Falling = 1 V to Gh-VSW Rising = 1 V to Gh-VSW Rising = 1 V to GL - 13 - ns Non-overlap Delay, Trailing Edge T _{NOL_T} GH-VSW Falling = 1 V to GL Rising = 1 V to GL - 12 - ns PWM Propagation Delay, Rising T _{PWM,PD_R} PWM = High to GL = 90% - 13 35 ns PWM Propagation Delay, Falling T _{PWM,PD_F} PWM = Low to SW = 90% - 47 52 ns Exiting PWM Mid-state Propagation Delay, Mid-to-Low T _{PWM,EXIT_L} PWM = Mid-to-Low to GL = 10% - 14 25 ns Exiting PWM Mid-state Propagation Delay, Mid-to-High T _{PWM,EXIT_H} PWM = Mid-to-High to SW = 10% - 13 25 ns EXCD FUNCTION Zero Cross Detect Threshold V _{ZCD} - - - - - m ZCD Blanking + Debounce Time t _{BLNK} - 330 - ns THERMAL WARNING Thermal Warning Temperature T _{THWN} THWN Temperature at Driver Die - 150 <td>Input Resistance</td> <td>R_{PWM_BIAS}</td> <td>SMOD# = V_{SMOD#_MID}</td> <td>-</td> <td>68</td> <td>-</td> <td>kΩ</td>	Input Resistance	R _{PWM_BIAS}	SMOD# = V _{SMOD#_MID}	-	68	-	kΩ
Rising = 1 V	PWM Input Bias Voltage	V_{PWM_BIAS}	SMOD# = V _{SMOD#_MID}	-	1.7	-	V
Rising = 1 V	Non-overlap Delay, Leading Edge	T _{NOL_L}		-	13	-	ns
PWM Propagation Delay, Falling T _{PWM,PD_F} PWM = Low to SW = 90% - 47 52 ns Exiting PWM Mid-state Propagation Delay, Mid-to-Low T _{PWM_EXIT_L} PWM = Mid-to-Low to GL = 10% - 14 25 ns Exiting PWM Mid-state Propagation Delay, Mid-to-High T _{PWM_EXIT_H} PWM = Mid-to-High to SW = 10% - 13 25 ns ZCD FUNCTION Zero Cross Detect Threshold V _{ZCD} - -6 - mV ZCD Blanking + Debounce Time t _{BLNK} - 330 - ns THERMAL WARNING Thermal Warning Temperature T _{THWN} Temperature at Driver Die - 150 - °C Thermal Warning Hysteresis T _{THWN_HYS} - 15 - °C	Non-overlap Delay, Trailing Edge	T _{NOL_T}	GH-VSW Falling = 1 V to GL Rising = 1 V	-	12	-	ns
Exiting PWM Mid-state Propagation Delay, Mid-to-Low TPWM_EXIT_L PWM = Mid-to-Low to GL = 10% - 14 25 ns Exiting PWM Mid-state Propagation Delay, Mid-to-High TPWM_EXIT_H PWM = Mid-to-High to SW = 10% - 13 25 ns ZCD FUNCTION Zero Cross Detect Threshold VZCD - -6 - mV ZCD Blanking + Debounce Time tBLNK - 330 - ns THERMAL WARNING Thermal Warning Temperature TTHWN Temperature at Driver Die - 150 - °C Thermal Warning Hysteresis TTHWN_HYS - 15 - °C	PWM Propagation Delay, Rising	T _{PWM,PD_R}	PWM = High to GL = 90%	-	13	35	ns
Propagation Delay, Mid-to-Low Exiting PWM Mid-state Propagation Delay, Mid-to-High TPWM_EXIT_H PWM = Mid-to-High to SW = 10% TPWM_EXIT_H PWM = Mid-to-High to SW = 10% TPWM_EXIT_H PWM = Mid-to-High to SW = 10% TRUE TO SW	PWM Propagation Delay, Falling	T _{PWM,PD_F}	PWM = Low to SW = 90%	-	47	52	ns
Propagation Delay, Mid-to-High ZCD FUNCTION Zero Cross Detect Threshold V _{ZCD} 6 - mV ZCD Blanking + Debounce Time t _{BLNK} - 330 - ns THERMAL WARNING Thermal Warning Temperature T _{THWN} Temperature at Driver Die - 150 - °C Thermal Warning Hysteresis T _{THWN_HYS} - 15 - °C		T _{PWM_EXIT_L}	PWM = Mid-to-Low to GL = 10%	-	14	25	ns
		T _{PWM_EXIT_H}	PWM = Mid-to-High to SW = 10%	-	13	25	ns
	ZCD FUNCTION						
THERMAL WARNING Thermal Warning Temperature T _{THWN} Temperature at Driver Die - 150 - °C Thermal Warning Hysteresis T _{THWN_HYS} - 15 - °C	Zero Cross Detect Threshold	V _{ZCD}		_	-6	-	mV
Thermal Warning Temperature T _{THWN} Temperature at Driver Die - 150 - °C Thermal Warning Hysteresis T _{THWN_HYS} - 15 - °C	ZCD Blanking + Debounce Time	t _{BLNK}		_	330	-	ns
Thermal Warning Hysteresis T _{THWN_HYS} - 15 - °C	THERMAL WARNING						
The state of the s	Thermal Warning Temperature	T _{THWN}	Temperature at Driver Die		150		°C
Thermal Shutdown Temperature T _{THDN} Temperature at Driver Die - 180 - °C	Thermal Warning Hysteresis	T _{THWN_HYS}		-	15	-	°C
	Thermal Shutdown Temperature	T _{THDN}	Temperature at Driver Die		180	-	°C

Table 5. ELECTRICAL CHARACTERISTICS (continued)

 $(V_{VCC} = V_{VCCD} = 5.0 \text{ V}, V_{VIN} = 12 \text{ V}, V_{DISB\#} = 2.0 \text{ V}, C_{VCCD} = C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = C_{VCC} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text{ F unless specified otherwise}) \\ \text{Min/Max values are valid for the } C_{VCD} = 0.1 \text$ temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le 125^{\circ}\text{C}$ unless noted otherwise, and are guaranteed by test, design or statistical correlation.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
THERMAL WARNING						
Thermal Shutdown Hysteresis	T _{THDN_HYS}		-	25	-	°C
THWM Open Drain Current	I _{THWN}		-	-	5	mA
BOOST STRAP DIODE						
Forward Voltage		Forward Bias Current = 2.0 mA	-	300	-	mV
LOW-SIDE DRIVER						
Output Impedance, Sourcing	R _{SOURCE_GL}	Source Current = 100 mA	-	0.9	-	Ω
Output Impedance, Sinking	R _{SINK_GL}	Sink Current = 100 mA	-	0.4	-	Ω
GL Rise Time	T_{R_GL}	GL = 10% to 90%	-	27	-	ns
GL Fall Time	T _{F_GL}	GL = 90% to 10%	_	13	- \	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 6. LOGIC TABLE

	INPUT TRUTH TABLE					
DISB#	PWM	SMOD# (Note 4)	GH (not a pin)	GL		
L	Х	X	EOF. SWI	7 L		
Н	Н	X	CV HS (1)	L		
Н	L	X	ROLMA	Н		
Н	MID	H or MID	10,50L	ZCD (Note 5)		
Н	MID	Will X X	'M' L	L (Note 6)		
There is no delay before	ons de-bounce time, 250 i Glagoes low	er resistors when SMOD# is does blanking time and then SW	exceeding ZCD threshold.			

TYPICAL PERFORMANCE CHARACTERISTICS

(Test Conditions: $V_{IN} = 12 \text{ V}$, $V_{CC} = P_{VCC} = 5 \text{ V}$, $V_{OUT} = 1 \text{ V}$, $V_{OUT} = 250 \text{ nH}$, $V_{A} = 25^{\circ}\text{C}$ and natural convection cooling, unless otherwise noted)

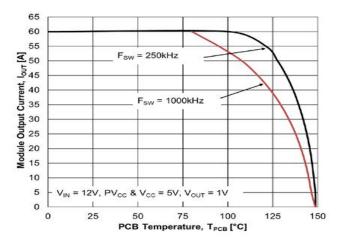


Figure 4. Safe Operating Area with 12 V_{IN}

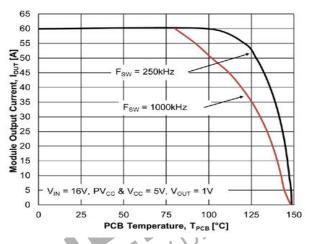


Figure 5. Safe Operating Area with 16 V_{IN}

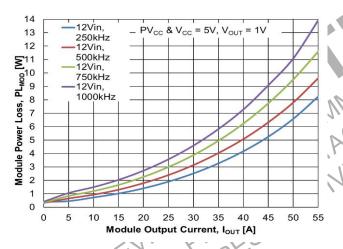


Figure 6. Power Loss vs. Output Current with 12

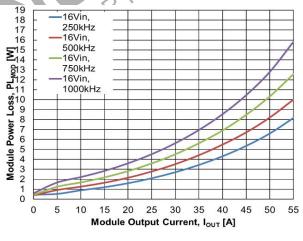


Figure 7. Power Loss vs. Output Current with 16

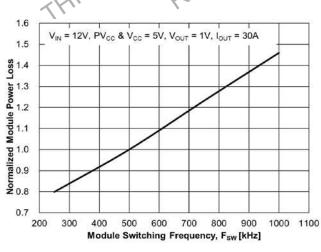


Figure 8. Power Loss vs. Switching Frequency

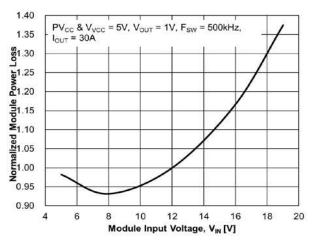


Figure 9. Power Loss vs. Input Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(Test Conditions: $V_{IN} = 12 \text{ V}$, VCC = $P_{VCC} = 5 \text{ V}$, $V_{OUT} = 1 \text{ V}$, $L_{OUT} = 250 \text{ nH}$, $L_{A} = 25 \text{ °C}$ and natural convection cooling, unless otherwise noted)

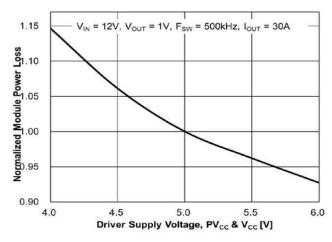


Figure 10. Power Loss vs. Driver Supply Voltage

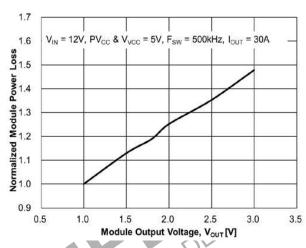


Figure 11. Power Loss vs. Output Voltage

Figure 12. Power Loss vs. Output Inductor

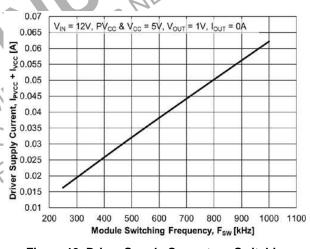


Figure 13. Driver Supply Current vs. Switching Frequency

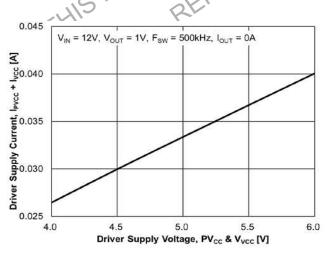


Figure 14. Driver Supply Current vs. Driver Supply Voltage

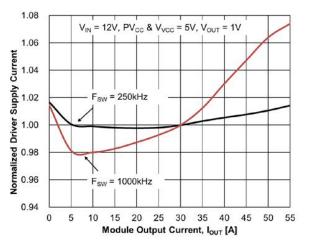


Figure 15. Driver Supply Current vs. Output
Current

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(Test Conditions: $V_{IN} = 12 \text{ V}$, VCC = $P_{VCC} = 5 \text{ V}$, $V_{OUT} = 1 \text{ V}$, $L_{OUT} = 250 \text{ nH}$, $L_{A} = 25 \text{ °C}$ and natural convection cooling, unless otherwise noted)

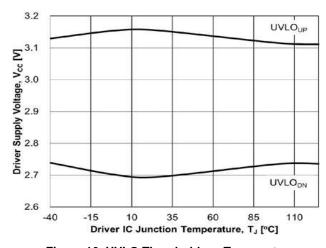


Figure 16. UVLO Threshold vs. Temperature

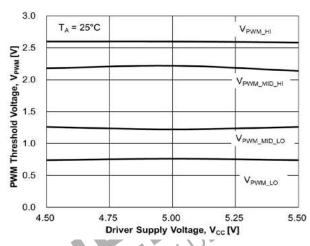


Figure 17. PWM Threshold vs. Driver Supply Voltage

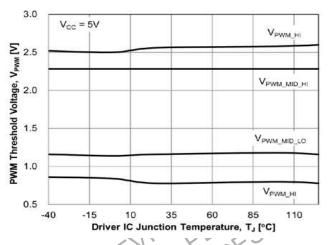


Figure 18. PWM Threshold vs. Temperature

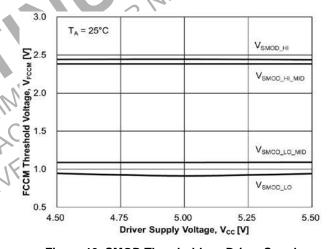


Figure 19. SMOD Threshold vs. Driver Supply Voltage

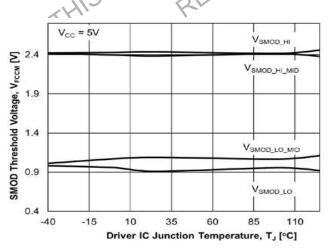


Figure 20. FCCM Threshold vs. Temperature

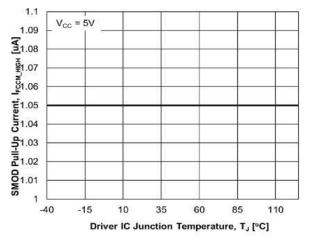


Figure 21. FCCM Pull-Up Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(Test Conditions: V_{IN} = 12 V, VCC = P_{VCC} = 5 V, V_{OUT} = 1 V, L_{OUT} = 250 nH, T_A = 25°C and natural convection cooling, unless otherwise noted)

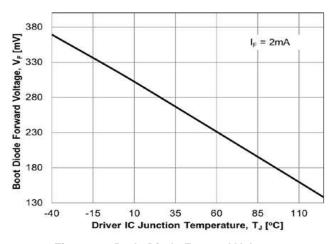


Figure 22. Body Diode Forward Voltage vs. **Temperature**

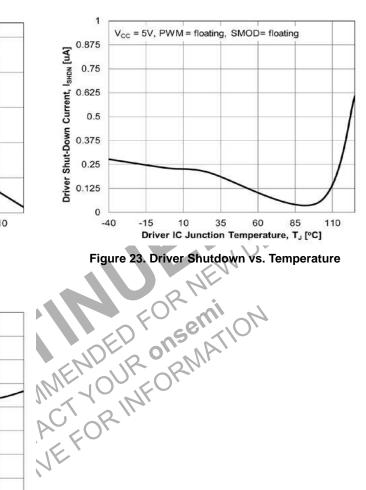


Figure 23. Driver Shutdown vs. Temperature

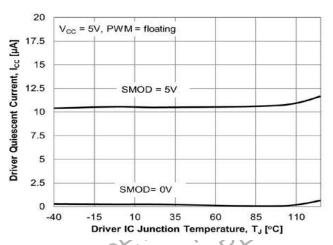


Figure 24. Driver Quiescent Current vs. Temperature

Theory of Operation

The NCP252163 is an integrated driver and MOSFET module designed for use in a synchronous buck converter topology. The NCP252163 supports numerous application control definitions including ZCD (Zero Current Detect) and alternately PWM Tristate control. A PWM input signal is required to control the drive signals to the high-side and low-side integrated MOSFETs.

Low-Side Driver

The low-side driver drives an internal, groundreferenced low-R_{DS(on)} N-Channel MOSFET. The voltage supply for the low-side driver is internally connected to the VCCD and PGND pins.

High-Side Driver

The high-side driver drives an internal, floating low-R_{DS(on)} N-channel MOSFET. The gate voltage for the high side driver is developed by a bootstrap circuit referenced to Switch Node (VSW and PHASE) pins.

The bootstrap circuit is comprised of the integrated diode and an external bootstrap capacitor and resistor. When the NCP252163 is starting up, the VSW pin is at ground, allowing the bootstrap capacitor to charge up to VCCD through the bootstrap diode (See Figure 1). When the PWM input is driven high, the high-side driver turns on the high-side MOSFET using the stored charge of the bootstrap capacitor. As the high-side MOSFET turns on, the voltage at the VSW and PHASE pins rises. When the high-side MOSFET is fully turned on, the switch node settles to VIN and the BST pin settles to VIN + VCCD - Vdiode (excluding parasitic ringing).

Bootstrap Circuit

The bootstrap circuit relies on an external charge storage capacitor (CBST) and an integrated diode to provide current to the HS Driver. A multi-layer ceramic capacitor (MLCC) with a value greater than 100 nF should be used as the bootstrap capacitor. A 1 to 5 Ω resistor in series with the bootstrap capacitor can be used to decrease the VSW overshoot.

Power Supply Decoupling

The NCP252163 sources relatively large currents into the MOSFET gates. In order to maintain a constant and stable supply voltage (VCCD) a low-ESR capacitor should be placed near the power and ground pins. A multi-layer ceramic capacitor (MLCC) between $1~\mu F$ and $4.7~\mu F$ is typically used.

A separate supply pin (VCC) is used to power the analog and digital circuits within the driver. A 1 μF ceramic capacitor should be placed on this pin in close proximity to the NCP252163. It is good practice to separate the VCC and VCCD decoupling capacitors with a resistor (2 – 10 Ω typical) to avoid coupling driver noise to the analog and digital circuits that control the driver function (See Figure 1). It is recommended to connect the supply to VCCD and then VCC through the filter.

Safety Timer and Overlap Protection Circuit

It is important to avoid cross-conduction of the two MOSFETS which could result in a decrease in the power conversion efficiency or damage to the device.

The NCP252163 prevents cross-conduction by monitoring the status of the MOSFETs and applying the appropriate amount of non-overlap (NOL) time (the time between the turn-off of one MOSFET and the turn-on of the other MOSFET). When the PWM input pin is driven high, the gate of the low-side MOSFET (LSGATE) goes low after a propagation delay (TPWM_PD_R). The time it takes for the low-side MOSFET to turn off is dependent on the total charge on the low-side MOSFET gate.

The NCP252163 monitors the gate voltage of both MOSFETs and the switch node voltage to determine the conduction status of the MOSFETs. Once the low-side MOSFET is turned off an internal timer delays the turn-on of the high-side MOSFET. When the PWM input pin goes low, the gate of the high-side MOSFET (HSGATE) goes low after the propagation delay (TPWM_PD_F). The time to turn off the high-side MOSFET is dependent on the total gate charge of the high-side MOSFET. A timer is triggered once the high-side MOSFET stops conducting, to delay the turn-on of the low-side MOSFET.

Zero Current Detect

The Zero Current Detect PWM (ZCD_PWM) mode is enabled when SMOD# is HIGH or MID (see Tables 6 & 8).

With PWM set to > VPWM_HI, GL goes low and GH goes high after the non-overlap delay. When PWM is driven to < VPWM_HI and to > VPWM_LO, GL goes high after the non-overlap delay, and stays high for the duration of the ZCD blanking timer (TZCD_BLANK) and an 80 ns de-bounce timer. Once this timer expires, VSW is monitored for zero current detection, and GL is pulled low once zero current is detected. The threshold on VSW to determine zero current undergoes an auto-calibration cycle every time DISB# is brought from low to high. This auto-calibration cycle typically takes 25 µs to complete.

PWM Input

The PWM Input pin is a tri–state input used to control the HS MOSFET ON/OFF state. It also determines the state of the LS MOSFET. See Table 6 for logic operation. The PWM in some cases must operate with frequency programming resistances to ground. These resistances can range from $10~k\Omega$ to $300~k\Omega$ depending on the application. When SMOD# is set to > VSMOD#_HI or to < VSMOD#_LO, the input impedance to the PWM input is very high in order to avoid interferences with controllers that must use programming resistances on the PWM pin.

If SMOD# is set to < VSMOD#_HI and > VSMOD#_LO (Mid-State), the PWM pin undriven default voltage is set to Mid-State with internal divider resistances.

Disable Input (DISB#)

The DISB# pin is used to disable the GH to the High-Side FET to prevent power transfer. The pin has a pull-down resistance to force a disabled state when it is left unconnected. DISB# can be driven from the output of a logic device or set high with a pull-up resistance to VCC.

Table 7. UVLO/DISB# LOGIC TABLE

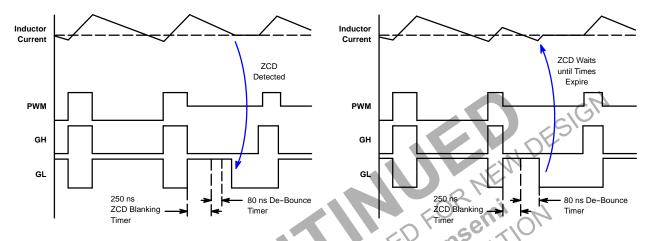
UVLO	DISB#	Driver State
L	Х	Disabled (GH = GL = 0)
Н	L	Disabled (GH = GL = 0)
Н	Н	Enabled (See Table 1)
Н	Open	Disabled (GH = GL = 0)

VCC Undervoltage Lockout

The VCC pin is monitored by an Undervoltage Lockout Circuit (UVLO). A VCC voltage above the rising threshold enables the NCP252163.

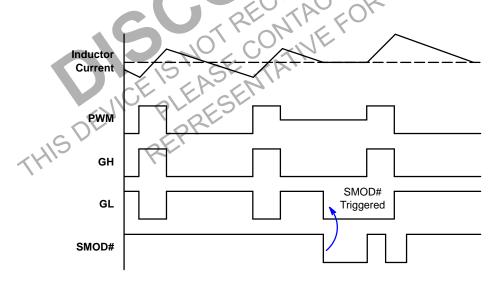
Thermal Warning

The THWN pin is an open drain output. When the temperature of the driver exceeds T_{THWN}, the THWN pin is pulled low indicating a thermal warning. At this point, the


part continues to function normally. When the temperature drops T_{THWN_HYS} below T_{THWN} , the THWN pin goes high. If the driver temperature exceeds T_{THDN} , the part enters thermal shutdown and turns off both MOSFETs. Once the temperature falls T_{THDN_HYS} below T_{THDN} , the part resumes normal operation.

Skip Mode Input (SMOD#)

The SMOD# tri-state input pin has an internal pull-up resistance to VCC. When driven low, the SMOD# pin


enables the low side synchronous MOSFET to operate independently of the internal ZCD function. When the SMOD# pin is set low while PWM is in the mid-state, the low side MOSFET can be disabled to allow discontinuous mode operation.

The NCP252163 has the capability of internally connecting a resistor divider to the PWM pin. To engage ZCD, SMOD# needs to be placed into mid-state or high. While in SMOD# mid-state, the IC logic is equivalent to SMOD# being in the high state.

NOTE: If the Zero Current Detect circuit detects zero current after the ZCD Wait timer period, the GL is driven low by the Zero Current Detect signal.

If the Zero Current Detect circuit detects zero current before the ZCD Wait timer period expires, the Zero Current detect signal is ignored and the GL is driven low at the end of the ZCD Wait timer period.

NOTE: If the SMOD# input is driven low at any time after the GL has been driven high, the SMOD# Falling edge triggers the GL to go low.

If the SMOD# input is driven low while the GH is high, the SMOD# input is ignored.

Figure 25. SMOD# Timing Diagram

For Use with Controllers with 3-State PWM and No Zero Current Detection Capability:

Table 8, LOGIC TABLE - 3-STATE PWM CONTROLLERS WITH NO ZCD

PWM	SMOD#	GH (Not a Pin)	GL
Н	H or MID	ON	OFF
М	H or MID	OFF	ZCD
L	H or MID	OFF	ON

This section describes operation with controllers that are capable of 3 states in their PWM output and relies on the NCP252163 to conduct zero current detection during discontinuous conduction mode (DCM).

The SMOD# pin needs to either be set to 5 V or left disconnected. The NCP252163 has an internal pull-down resistor that connects to VCC that sets SMOD# to the logic high state if this pin is disconnected.

To operate the buck converter in continuous conduction mode (CCM), PWM needs to switch between the logic high

and low states. To enter into DCM, PWM needs to be switched to the mid-state.

Whenever PWM transitions to mid-state, GH turns off and GL turns on. GL stays on for the duration of the de-bounce timer and ZCD blanking timers. Once these timers expire, the NCP252163 monitors the SW voltage and turns GL off when SW exceeds the ZCD threshold voltage. By turning off the LS FET, the body diode of the LS FET allows any positive current to go to zero but prevents negative current from conducting.

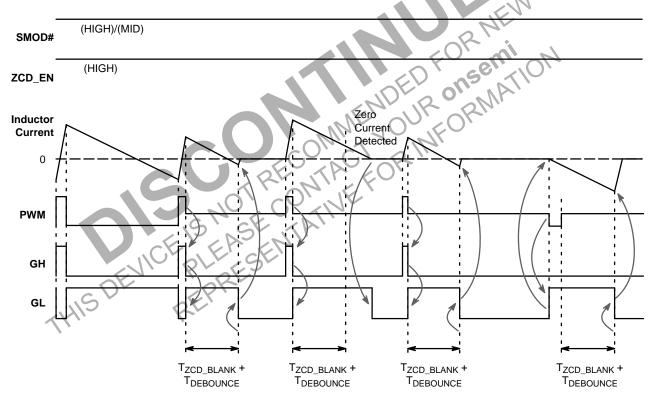


Figure 26. Timing Diagram - 3-state PWM Controller, No ZCD

For Use with Controllers with 3-State PWM Controllers Detection Capability:

Table 9, LOGIC TABLE - 3-STATE PWM CONTROLLERS WITH ZCD

PWM	SMOD#	GH (Not a Pin)	GL
Н	L	ON	OFF
М	L	OFF	OFF
L	L	OFF	ON

This section describes operation with controllers that are capable of 3 PWM output levels and have zero current detection during discontinuous conduction mode (DCM).

The SMOD# pin needs to be pulled low (below $V_{SMOD\#\ LO}).$

To operate the buck converter in continuous conduction mode (CCM), PWM needs to switch between the logic high and low states. During DCM, the controller is responsible for detecting when zero current has occurred, and then notifying the NCP252163 to turn off the LS FET. When the controller detects zero current, it needs to set PWM to mid-state, which causes the NCP252163 to pull both GH and GL to their off states without delay.

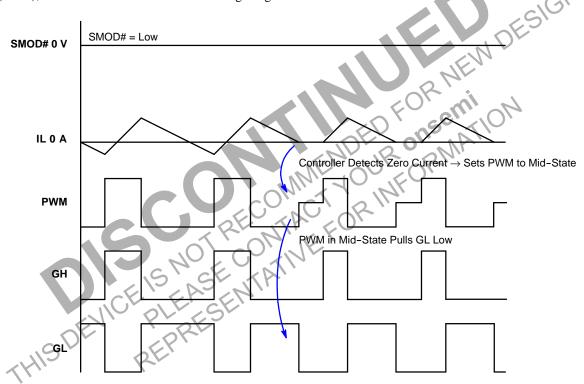


Figure 27. Timing Diagram - 3-state PWM Controller, with ZCD

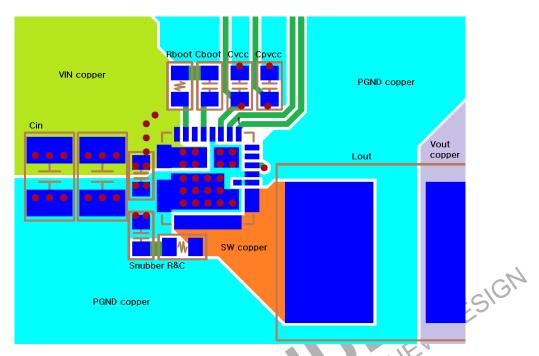


Figure 28. Top Copper Layer

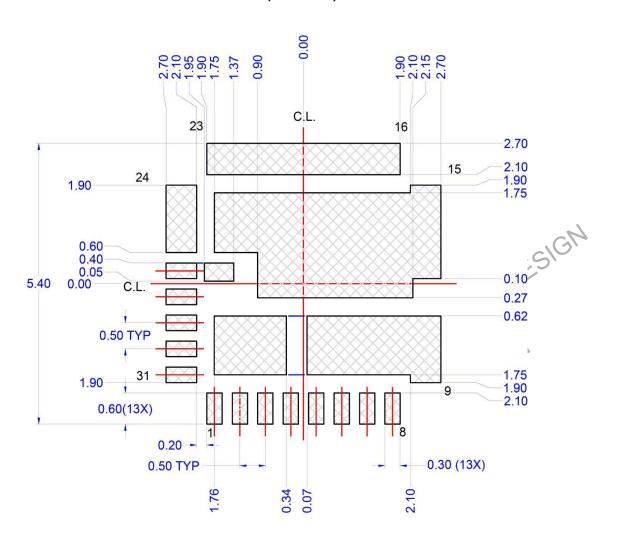
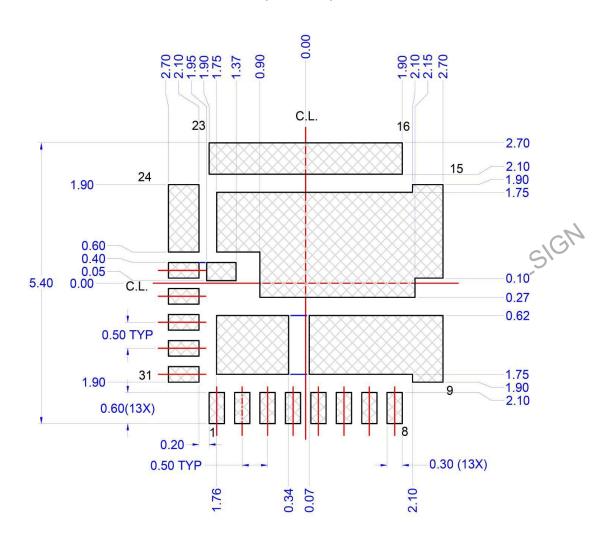



Figure 29. Bottom Copper Layer


RECOMMENDED PCB FOOTPRINT (OPTION 1)

LAND PATTERN RECOMMENDATION

Figure 30. Recommended PCB Footprint (Option 1)

RECOMMENDED PCB FOOTPRINT (OPTION 2)

LAND PATTERN RECOMMENDATION

Figure 31. Recommended PCB Footprint (Option 2)

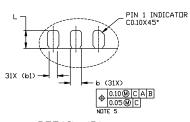
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries.

SCALE 2.5:1

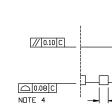
○ 0.10 C

○ 0.10 C

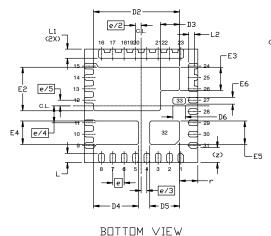
PIN 1 REFERENCE

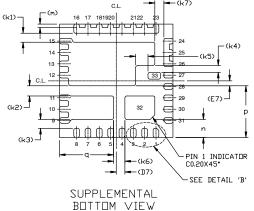

PQFN31 5X5, 0.5P CASE 483BR ISSUE D

A В **DATE 13 FEB 2023**


NOTES:

(A3)

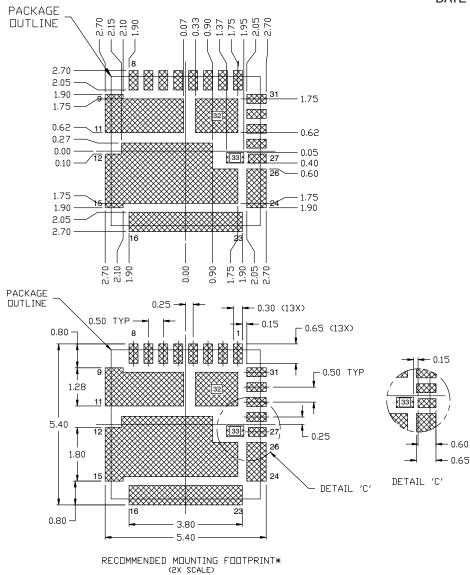

- DDES NOT FULLY CONFORM TO JEDEC REGISTRATION MO-220, DATES MAY/2005. DIMENSIONING AND TOLERANCING PER ASME Y14.5, 2009. CONTROLLING DIMENSION MILLIMETERS DIMENSIONS DO NOT INCLUDE BURRS AND SMEAR OR MOLD
- DIMENSIONS DO NOT INCLUDE BORRS AND SMEAR OR MILLS
 FLASH.
 MOLD FLASH OR BURRS AND SMEAR DO NOT EXCEED 0.10MM.
 DIMENSION 6 AND BI APPLIES TO PLATED TERMINAL AND IS
 MEASURED BETWEEN 0.15 AND 0.30 FROM THE TERMINAL TIP.


<u>DETAIL</u> ′A′ (SCALE 2:1)

TOP VIEW

SIDE VIEW

SEE DETAIL 'A'


	MILLIMETERS				
DIM	MIN. NOM. MAX.				
Α	0.70	0.75	0.80		
A1	0.00	-	0.05		
АЗ	0.15	0.20	0.25		
b	0.20	0.25	0.30		
b1	0.13	0.18	0.30		
D	4.90	5.00	5.10		
D2	3.70	3.80	3.90		
D3	0.75	0.85	0.95		
D4	1.88	1.98	2.08		
D5	1.22	1.32	1.42		
D6	0.45	0.55	0.65		
D7	0.38 REF				
Е	4.90	5.00	5.10		
E2	1.82	1.92	2.02		
E3	0.93	1.03	1.13		
E4	0.93	1.03	1.13		
E5	0.93	1.03	1.13		
E6	0.20	0.30	0.40		
E7	0.22 REF				
е	0.50 BSC				
e/2	0.25 BSC				
e/3	0.25 BSC				
e/4	0.75 BSC				
e/5	0.25 BSC				
k1	0.40 REF				
k2	0.45 REF				
k3	0.40 REF				
k4	0.30 REF				
k5	0.55 REF				
k6	0.50 REF				
k7	0.40 REF				
L	0.30	0.40	0.50		
L1	0.30	0.40	0.50		
L2	0.15	0.25	0.35		
m	0.15 REF				
n	0.80 REF				
р	2.28 REF				
q	2.38 REF				
r	0.80 REF				
	0.625 REF				

DOCUMENT NUMBER:	98AON13680G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PQFN31 5X5, 0.5P		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PQFN31 5X5, 0.5P CASE 483BR ISSUE D

DATE 13 FEB 2023

* For additional information on our Pb-Free strategy and soldering details, please download the DNSEMI Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

MARKING DIAGRAM* O XXXXXXXX XXXXXXXX AWLYYWW* (N	XXXX = Specific Device Code A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week = = Pb-Free Package lote: Microdot may be in either location)	*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.
---	---	---

DOCUMENT NUMBER:	98AON13680G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PQFN31 5X5, 0.5P		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales