NLU1GT126

Non-Inverting 3-State Buffer, TTL Level

LSTTL-Compatible Inputs

The NLU1GT126 MiniGate[™] is an advanced CMOS high-speed non-inverting buffer in ultra-small footprint.

The NLU1GT126 requires the 3-state control input (OE) to be set Low to place the output in the high impedance state.

The device input is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing.

The NLU1GT126 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{PD} = 3.8 \text{ ns} (Typ) @ V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL-Compatible Input: $V_{IL} = 0.8 \text{ V}; V_{IH} = 2.0 \text{ V}$
- CMOS-Compatible Output: $V_{OH} > 0.8 V_{CC}; V_{OL} < 0.1 V_{CC}$ @ Load
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Ultra-Small Packages
- These are Pb-Free Devices

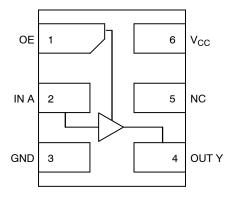


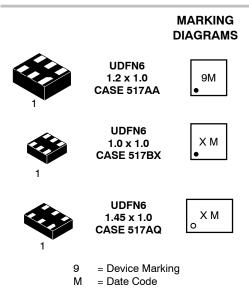
Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

FUNCTION TABLE

Inp	Output	
Α	OE	Y
L	н	L
Н	Н	н
Х	L	Z

1	OE
2	IN A


PIN ASSIGNMENT

1	96
2	IN A
3	GND
4	OUT Y
5	NC
6	V _{CC}

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	-0.5 to +7.0	V
Ι _{ΙΚ}	DC Input Diode Current V _{IN} < GND	-20	mA
Ι _{ΟΚ}	DC Output Diode Current V _{OUT} < GND	±20	mA
Ι _Ο	DC Output Source/Sink Current	±12.5	mA
I _{CC}	DC Supply Current Per Supply Pin	±25	mA
I _{GND}	DC Ground Current per Ground Pin	±25	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at 125°C (Note 2)	±500	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

2. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

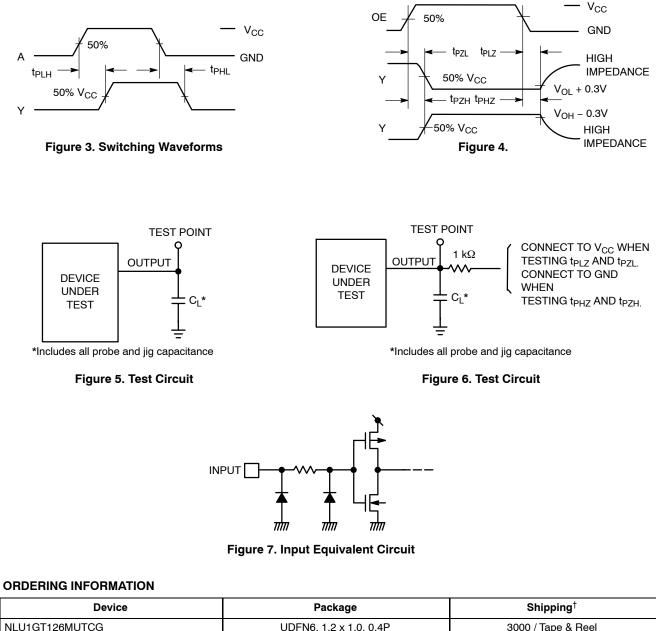
Symbol	Parameter			Max	Unit
V _{CC}	Positive DC Supply Voltage		1.65	5.5	V
V _{IN}	Digital Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	5.5	V
T _A	Operating Free-Air Temperature		-55	+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate $V_{CC} = V_{CC}$	= 3.3 V ± 0.3 V = 5.0 V ± 0.5 V	0 0	100 20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

				T _A = 25 °C			T _A = +85°C		T _A = −55°C to +125°C		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Low-Level Input Voltage		3.0 4.5 to 5.5	1.4 2.0			1.4 2.0		1.4 2.0		V
V _{IL}	Low-Level Input Voltage		3.0 4.5 to 5.5			0.53 0.8		0.53 0.8		0.53 0.8	V
V _{OH}	High-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \ \mu A$	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
		$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ I_{OH} = -4 \mbox{ mA} \\ I_{OH} = -8 \mbox{ mA} \end{array}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		
V _{OL}	Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \ \mu A$	3.0 4.5		0 0	0.1 0.1		0.1 0.1		0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μA
I _{CC}	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		20		40	μA
I _{CCT}	Quiescent Supply Current	V _{IN} = 3.4 V Other Input: V _{CC} or GND	5.5			1.35		1.50		1.65	mA
I _{OPD}	Output Leakage Current	V _{OUT} = 5.5 V	0			0.5		5.0		10	μA
I _{OZ}	3-State Leakage Current	$ \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ V_{OUT} = V_{CC} \text{ or} \\ GND \end{array} $	0			±0.25		±2.5		±2.5	μA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

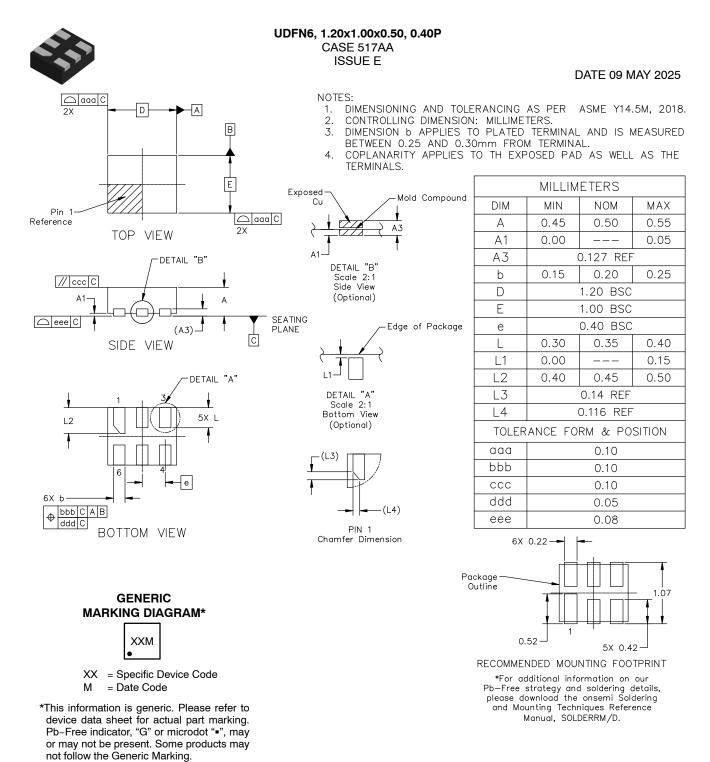

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

		V _{CC}	Test	т	A = 25 °	°C	TA =	+85°C		–55°C 25°C	
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay, A to Y (Figures 3 and 5)	3.0 to 3.6	C _L = 15 pF C _L = 50 pF		5.6 8.1	8.0 11.5	1.0 1.0	9.5 13		12 16	ns
		4.5 to 5.5	C _L = 15 pF C _L = 50 pF		3.8 5.3	5.5 7.5	1.0 1.0	6.5 8.5		8.5 10.5	
t _{PZL} , t _{PZH}	Output Enable Time, OE to Y (Figures 4 and 6)	3.0 to 3.6	C _L = 15 pF C _L = 50 pF		5.4 7.9	8.0 11.5	1.0 1.0	9.5 13		11.5 15	ns
		4.5 to 5.5	C _L = 15 pF C _L = 50 pF		3.6 5.1	5.1 7.1	1.0 1.0	6.0 8.0		7.5 9.5	
t _{PLZ} , t _{PHZ}	Output Disable Time, OE to Y (Figures 4 and 6)	3.0 to 3.6	C _L = 15 pF C _L = 50 pF		6.5 8.0	9.7 13.2	1.0 1.0	11.5 15		14.5 18.5	ns
		4.5 to 5.5	C _L = 15 pF C _L = 50 pF		4.8 7.0	6.8 8.8	1.0 1.0	8.0 10		10 12	
C _{IN}	Input Capacitance				4	10		10		10	pF
C _{OUT}	3-State Output Capacitance (Output in High Impedance State)				6						pF
C _{PD}	Power Dissipation Capacitance (Note 3)	5.0			14						pF

3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

NLU1GT126

SWITCHING WAVEFORMS

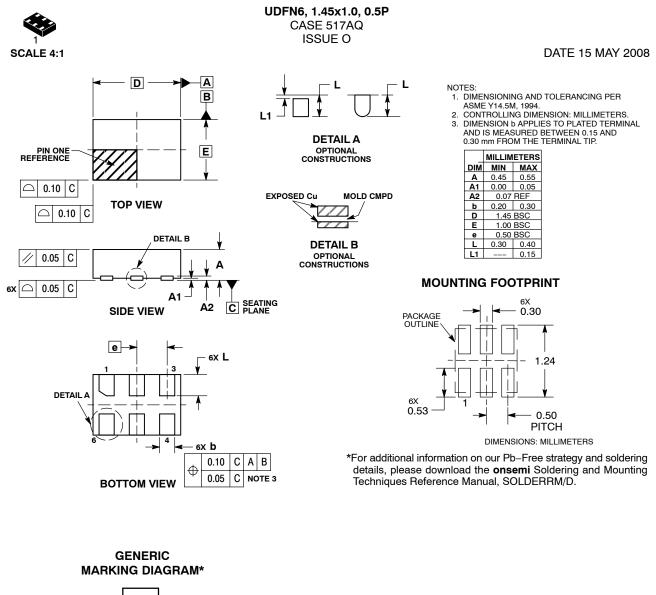


	C C	
NLU1GT126MUTCG	UDFN6, 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
NLU1GT126AMUTCG	UDFN6, 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
NLU1GT126CMUTCG	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

 DOCUMENT NUMBER:
 98AON22068D
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.


 DESCRIPTION:
 UDFN6, 1.20x1.00x0.50, 0.40P
 PAGE 1 OF 1

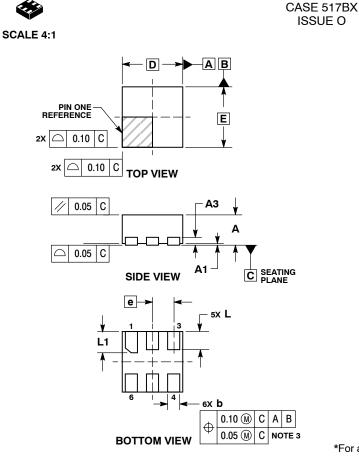
 onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2010

XM

= Specific Device Code

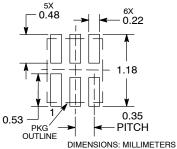

Х

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON30313E UDFN6, 1.45x1.0, 0.5P **DESCRIPTION:** PAGE 1 OF 1 onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi


DATE 18 MAY 2011

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.20 MM FROM TERMINAL TIP. 4. PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

1	BURRS AND MOLD FD						
		MILLIMETERS					
	DIM	MIN MAX					
	Α	0.45	0.55				
	A1	0.00 0.05					
	A3	0.13 REF					
	b	0.12 0.22					
	D	1.00 BSC					
	Е	1.00 BSC					
	е	0.35 BSC					
	L	0.25 0.35					
	L1	0.30	0.40				

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

X = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56787E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	UDFN6, 1x1, 0.35P	PAGE 1 OF 1					

UDFN6, 1x1, 0.35P

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>