

High Current Bias Resistor Transistor

PNP Silicon

NSB9435T1G, NSV9435T1G

Features

• Collector -Emitter Sustaining Voltage -

$$V_{CEO(sus)} = 30 \text{ Vdc (Min)} @ I_C = 10 \text{ mAdc}$$

• High DC Current Gain -

$$h_{FE}$$
 = 125 (Min) @ I_C = 0.8 Adc
= 90 (Min) @ I_C = 3.0 Adc

• Low Collector -Emitter Saturation Voltage -

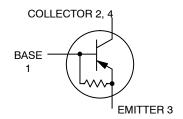
$$V_{CE(sat)} = 0.275 \text{ Vdc (Max)} @ I_C = 1.2 \text{ Adc}$$

= 0.55 Vdc (Max) @ $I_C = 3.0 \text{ Adc}$

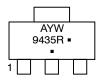
- SOT-223 Surface Mount Packaging
- ESD Rating Human Body Model: Class 1B
 - Machine Model: Class B
- AEC-Q101 Qualified and PPAP Capable
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	30	Vdc
Collector-Base Voltage	V _{CB}	45	Vdc
Emitter-Base Voltage	V _{EB}	±6.0	Vdc
Base Current - Continuous	Ι _Β	1.0	Adc
Collector Current Continuous Peak	I _C	3.0 5.0	Adc
Total Power Dissipation	P _D	3.0 24 1.56	W mW/°C W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1


POWER BJT $I_C = 3.0$ AMPERES $BV_{CEO} = 30$ VOLTS $V_{CE(sat)} = 0.275$ VOLTS

SOT-223 CASE 318E STYLE 1

MARKING DIAGRAM

A = Assembly Location

Y = Year W = Work Week

9435R = Device Code • = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSV9435T1G	SOT-223 (Pb-Free)	1,000/Tape & Reel

DISCONTINUED (Note 1)

	NSB9435T1G	SOT-223 (Pb-Free)	1,000/Tape & Reel
-		(

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
- DISCONTINUED: This device is not recommended for new design. Please contact your onsemi representative for information. The most current information on this device may be available on www.onsemi.com.

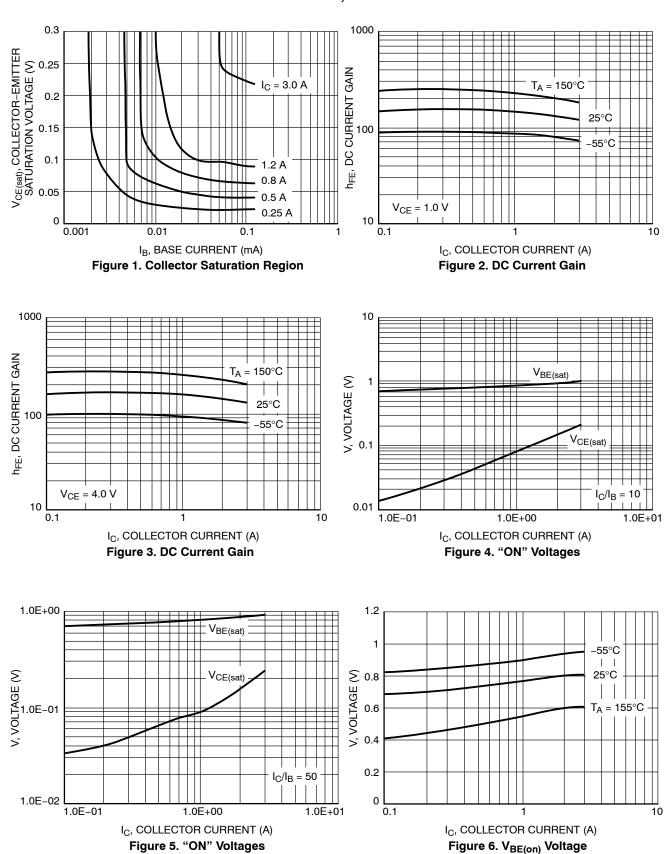
^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NSB9435T1G, NSV9435T1G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient on 1" sq. (645 sq. mm) Collector pad on FR-4 board material Junction-to-Ambient on 0.012" sq. (7.6 sq. mm) Collector pad on FR-4 board material	R _{θJC} R _{θJA} R _{θJA}	42 80 174	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 s	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	
Collector-Emitter Sustaining Voltage ($I_C = 10 \text{ mAdc}, I_B = 0 \text{ Adc}$)	V _{CEO(sus)}	30	-	-	Vdc
Emitter–Base Voltage ($I_E = 50 \mu Adc$, $I_C = 0 Adc$)	V _{EBO}	6.0	-	-	Vdc
Collector Cutoff Current (V _{CE} = 25 Vdc) (V _{CE} = 25 Vdc, T _J = 125°C)	I _{CER}	- -	- -	20 200	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc)	I _{EBO}	-	-	700	μAdc
ON CHARACTERISTICS (Note 2)	·				
Collector–Emitter Saturation Voltage ($I_C = 0.8$ Adc, $I_B = 20$ mAdc) ($I_C = 1.2$ Adc, $I_B = 20$ mAdc) ($I_C = 3.0$ Adc, $I_B = 0.3$ Adc)	V _{CE(sat)}	- - -	0.155 - -	0.210 0.275 0.550	Vdc
Base–Emitter Saturation Voltage (I _C = 3.0 Adc, I _B = 0.3 Adc)	V _{BE(sat)}	-	-	1.25	Vdc
Base-Emitter On Voltage (I _C = 1.2 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	-	-	1.10	Vdc
DC Current Gain $(I_C = 0.8 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.2 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 3.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$	h _{FE}	125 110 90	220 - -	- - -	-
Resistor	R1	7.5	10	12.5	kΩ
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0 Adc, f = 1.0 MHz)	C _{ob}	-	100	150	pF
Input Capacitance (V _{EB} = 8.0 Vdc)	C _{ib}	_	135	-	pF
Current-Gain - Bandwidth Product (Note 3) (I _C = 500 mA, V _{CE} = 10 V, F _{test} = 1.0 MHz)	f⊤	-	110	-	MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Pulse Test: Pulse Width $\leq 300~\mu\text{s},$ Duty Cycle $\leq 2\%.$

^{3.} $f_T = |h_{FE}| \bullet f_{test}$

NSB9435T1G, NSV9435T1G

NSB9435T1G, NSV9435T1G

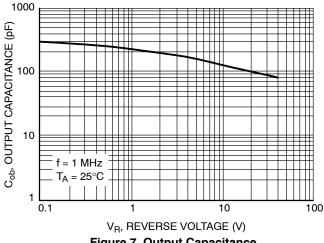


Figure 7. Output Capacitance

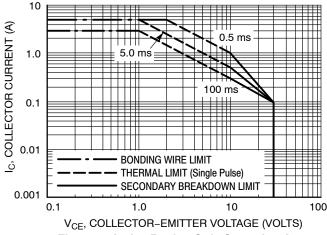


Figure 8. Active Region Safe Operating Area

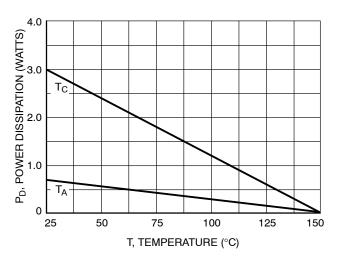


Figure 9. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and secondary breakdown. Safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 8 is based on $T_{J(pk)} = 150$ °C; T_C is variable depending on conditions. Secondary breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)}$ ≤ 150 °C. $T_{J(pk)}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

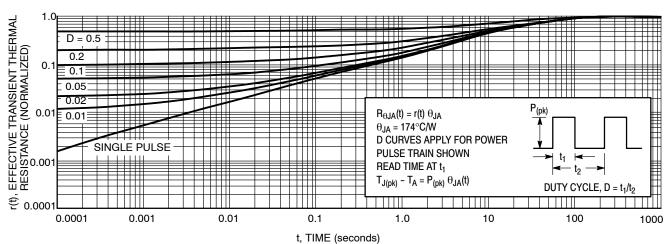


Figure 10. Thermal Response

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales