Dual Matched 40 V, 6.0 A, Low VCE(sat) NPN Transistor NSS40301MDR2G

These transistors are part of the onsemi e^{2} PowerEdge family of Low $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}$ transistors. They are assembled to create a pair of devices highly matched in all parameters, including ultra low saturation voltage $\mathrm{V}_{\mathrm{CE}(\text { sat })}$, high current gain and Base/Emitter turn on voltage.

Typical applications are current mirrors, differential amplifiers, DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e^{2} PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

- Current Gain Matching to 10%
- Base Emitter Voltage Matched to 2 mV
- This is a $\mathrm{Pb}-$ Free Device

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	40	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	6.0	Vdc
Collector Current - Continuous	I_{C}	3.0	A
Collector Current - Peak	$\mathrm{I}_{\text {CM }}$	6.0	A
Electrostatic Discharge	ESD	HBM Class 3B MM Class C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

40 VOLTS
6.0 AMPS

NPN LOW $\mathrm{V}_{\text {CE (sat) }}$ TRANSISTOR EQUIVALENT $\mathrm{R}_{\mathrm{DS}(\mathrm{on})} 44 \mathrm{~m} \Omega$

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NSS40301MDR2G	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel
NSV40301MDR2G		

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
SINGLE HEATED P_{D} 576 mW Total Device Dissipation (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$ 4.6 $\mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient (Note 1) $\mathrm{R}_{\theta \mathrm{JA}}$ 217 ${ }^{\circ} \mathrm{C} / \mathrm{W}$ Total Device Dissipation (Note 2) P_{D} 676 mW $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$ 5.4 $\mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient (Note 2) $\mathrm{R}_{\theta J \mathrm{CA}}$ 185 ${ }^{\circ} \mathrm{C} / \mathrm{W}$			

DUAL HEATED (Note 3)

Total Device Dissipation (Note 1) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Derate above } 25^{\circ} \mathrm{C} \end{aligned}$	$P_{\text {D }}$	$\begin{gathered} 653 \\ 5.2 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 1)	$\mathrm{R}_{\text {өJA }}$	191	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} \hline 783 \\ 6.3 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Thermal Resistance, Junction-to-Ambient (Note 2)	$\mathrm{R}_{\text {өJA }}$	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

1. FR-4 @ $10 \mathrm{~mm}^{2}, 1 \mathrm{oz}$. copper traces, still air.
2. FR-4@ $100 \mathrm{~mm}^{2}, 1 \mathrm{oz}$. copper traces, still air.
3. Dual heated values assume total power is the sum of two equally powered devices.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\left(I_{C}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR)CEO }}$	40	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CBO	40	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$	6.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=40 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$I_{\text {cbo }}$	-	-	0.1	$\mu \mathrm{Adc}$
Emitter Cutoff Current $\left(V_{E B}=6.0 \mathrm{Vdc}\right)$	$\mathrm{I}_{\text {ebo }}$	-	-	0.1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

$\begin{aligned} & \hline \text { DC Current Gain (Note 4) } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right)(\text { Note } 5) \end{aligned}$	$h_{\text {FE }}$ $\mathrm{h}_{\mathrm{FE}(1) / h_{\mathrm{FE}(2)}}$	$\begin{aligned} & 200 \\ & 200 \\ & 180 \\ & 180 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 400 \\ & 350 \\ & 340 \\ & 320 \\ & 0.99 \end{aligned}$		
Collector-Emitter Saturation Voltage (Note 4) $\begin{aligned} & \left(I_{C}=0.1 \mathrm{~A}, I_{\mathrm{B}}=0.010 \mathrm{~A}\right) \\ & \left(I_{C}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.100 \mathrm{~A}\right) \\ & \left(I_{C}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.010 \mathrm{~A}\right) \\ & \left(I_{C}=2.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.200 \mathrm{~A}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & 0.008 \\ & 0.044 \\ & 0.080 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.060 \\ & 0.115 \\ & 0.115 \end{aligned}$	V
$\begin{aligned} & \text { Base-Emitter Saturation Voltage (Note 4) } \\ & \left(I_{C}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.01 \mathrm{~A}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	0.780	0.900	V
$\begin{aligned} & \text { Base-Emitter Turn-on Voltage (Note 4) } \\ & \left(I_{\mathrm{C}}=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{~V}\right)(\text { Note } 6) \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{BE}(\text { on })} \\ \mathrm{V}_{\mathrm{BE}(1)-}-\mathrm{V}_{\mathrm{BE}(2)} \end{gathered}$	-	$\begin{gathered} 0.650 \\ 0.3 \end{gathered}$	$\begin{gathered} 0.750 \\ 2.0 \end{gathered}$	V mV
Cutoff Frequency $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}\right)$	f_{T}	100	-	-	MHz
Input Capacitance ($\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$)	Cibo	-	320	450	pF
Output Capacitance ($\mathrm{V}_{\mathrm{CB}}=3.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$)	Cobo	-	40	50	pF

SWITCHING CHARACTERISTICS

Delay $\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}\right)$	t_{d}	-	-	100	ns
Rise $\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}\right)$	t_{r}	-	-	100	ns
Storage $\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}\right)$	t_{s}	-	-	780	ns
Fall $\left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=750 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}\right)$	t_{f}	-	-	110	ns

4. Pulsed Condition: Pulse Width $=300 \mu \mathrm{sec}$, Duty Cycle $\leq 2 \%$.
5. $h_{F E(1)} / h_{F E(2)}$ is the ratio of one transistor compared to the other transistor within the same package. The smaller $h_{F E}$ is used as numerator.
6. $\mathrm{V}_{\mathrm{BE}(1)}-\mathrm{V}_{\mathrm{BE}(2)}$ is the absolute difference of one transistor compared to the other transistor within the same package.

I_{C}, COLLECTOR CURRENT (A)
Figure 1. Collector Emitter Saturation Voltage vs. Collector Current

I_{C}, COLLECTOR CURRENT (A)
Figure 3. DC Current Gain vs. Collector Current

I_{C}, COLLECTOR CURRENT (A)
Figure 5. Base Emitter Turn-On Voltage vs. Collector Current

I_{C}, COLLECTOR CURRENT (A)
Figure 2. Collector Emitter Saturation Voltage vs. Collector Current

I_{C}, COLLECTOR CURRENT (A)
Figure 4. Base Emitter Saturation Voltage vs. Collector Current

I_{b}, BASE CURRENT (A)
Figure 6. Saturation Region

TYPICAL CHARACTERISTICS

Figure 9. Safe Operating Area

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	\circ	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
2. V2OUT

V1OUT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND

GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE

1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#
4. DRAIN, \#2
5. DRAIN, \#2
6. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DA $\bar{S} I C \bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

