

Low V_{CE(sat)} NPN Transistors, 60 V, 1 A

NSS60101DMR6

onsemi's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage $(V_{CE(sat)})$ and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC-DC converters and LED lightning, power management...etc. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

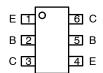
MAXIMUM RATINGS (T_A = 25 °C)

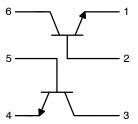
Symbol	Rating	Max	Unit
V _{CEO}	Collector-Emitter Voltage	60	Vdc
V _{CBO}	Collector-Base Voltage	80	Vdc
V _{EBO}	Emitter-Base Voltage	6	Vdc
Ic	Collector Current - Continuous	1	Α
I _{CM}	Collector Current - Peak	2	Α

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Characteristic	Max	Unit
$R_{ heta JA}$	Thermal Resistance Junction-to-Ambient (Notes 1 and 2)	234	°C/ W
P _D	Total Power Dissipation per Package @ T _A = 25 °C (Note 2)	0.53	W
$R_{ heta JA}$	Thermal Resistance Junction-to-Ambient (Note 3)	300	°C/ W
P _D	Power Dissipation per Transistor @ T _A = 25 °C (Note 3)	0.40	W
T _J , T _{stg}	Junction and Storage Temperature Range	-55 to +150	°C


- 1. Per JESD51-7 with 100 mm² pad area and 2 oz. Cu (Dual Operation).
- 2. P_D per Transistor when both are turned on is one half of Total P_D or 0.53 Watts.
- 3. Per JESD51-7 with 100 mm² pad area and 2 oz. Cu (Single-Operation).


60 Volt, 1 Amp NPN Low $V_{CE(sat)}$ Transistors

SC-74 CASE 318F

PIN CONNECTIONS

MARKING DIAGRAM

RAD = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS60101DMR6T1G	SC-74	3,000/
NSV60101DMR6T1G	(Pb-Free)	Tape & Reel

DISCONTINUED (Note 1)

'		
NSS60101DMR6T2G	SC-74	3,000/
NSV60101DMR6T2G	(Pb-Free)	Tape & Reel

- † For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- DISCONTINUED: These devices are not available. Please contact your onsemi representative for information. The most current information on these devices may be available on <u>www.onsemi.com</u>.


Table 1. ELECTRICAL CHARACTERISTICS (T_A = 25 °C unless otherwise noted)

Symbol	Characteristic	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS	•	•	•	•
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage (I _C = 10 mA, I _B = 0)	60			V
V _{(BR)CBO}	Collector-Base Breakdown Voltage (Ic = 0.1 mA, I _E = 0)	80			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage ($I_E = 0.1 \text{ mA}, I_C = 0$)	6			V
I _{CBO}	Collector Cutoff Current (V _{CB} = 60 V, I _E = 0)			100	nA
I _{EBO}	Emitter Cutoff Current (V _{BE} = 5.0 V)			100	nA
ON CHARAC	TERISTICS	•	•	•	•
h _{FE}	DC Current Gain (Note 4)				
	$(I_C = 100 \text{ mA}, V_{CE} = 2 \text{ V})$	200	320		
	$(I_C = 500 \text{ mA}, V_{CE} = 2 \text{ V})$	150	290		
	$(I_C = 1 A, V_{CE} = 2 V)$	70	110		
	$(I_C = 1 \text{ mA}, V_{CE} = 5 \text{ V})$	250	335		
	$(I_C = 100 \text{ mA}, V_{CE} = 5 \text{ V})$	250	335		
	(I _C = 500 mA, V _{CE} = 5 V)	200	310		
	(I _C = 1 A, V _{CE} = 5 V)	100	295		
V _{CE(sat)}	Collector-Emitter Saturation Voltage (Note 4)				V
	$(I_C = 100 \text{ mA}, I_B = 1 \text{ mA})$		0.080	0.200	
	$(I_C = 500 \text{ mA}, I_B = 50 \text{ mA})$		0.078	0.150	
	$(I_C = 1 \text{ A}, I_B = 50 \text{ mA})$		0.170	0.250	
	$(I_C = 1 \text{ A}, I_B = 100 \text{ mA})$		0.143	0.200	
V _{BE(sat)}	Base – Emitter Saturation Voltage (Note 4)				V
	$(I_C = 500 \text{ mA}, I_B = 50 \text{ mA})$		0.87	1.50	
	$(I_C = 1 \text{ A}, I_B = 50 \text{ mA})$		0.91	1.50	
	$(I_C = 1 \text{ A}, I_B = 100 \text{ mA})$		0.94	1.60	
V _{BE(on)}	Base-Emitter Turn-on Voltage (Note 4)				V
	$(I_C = 1 \text{ mA}, V_{CE} = 1 \text{ V})$	0.27	0.57		
	$(I_C = 500 \text{ mA}, V_{CE} = 2 \text{ V})$		0.76	0.90	
DYNAMIC CI	HARACTERISTICS				
C_{ibo}	Input Capacitance (V _{EB} = 1 V, f = 1.0 MHz)		100		pF
C _{obo}	Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)		8.0		pF
f _T	Cutoff Frequency (I _C = 50 mA, V _{CE} = 2.0 V, f = 100 MHz)		200		MH z
SWITCHING	TIMES	•		ı	•
t _d	Delay Time (V _{CC} = 10 V, I _C = 0.5 A, I _{B1} = 25 mA, I _{B2} =-25 mA)		10		ns
t _{on}	ON Time (V _{CC} = 10 V, I _C = 0.5 A, I _{B1} = 25 mA, I _{B2} =-25 mA)		28		ns
t _r	Rise Time ($V_{CC} = 10 \text{ V}$, $I_{C} = 0.5 \text{ A}$, $I_{B1} = 25 \text{ mA}$, $I_{B2} = -25 \text{ mA}$)		18		ns
t _s	Storage Time (V_{CC} = 10 V, I_{C} = 0.5 A, I_{B1} = 25 mA, I_{B2} =-25 mA)		622		ns
t _{off}	OFF Time (V _{CC} = 10 V, I _C = 0.5 A, I _{B1} = 25 mA, I _{B2} =-25 mA)		709		ns
t _f	Fall Time (V _{CC} = 10 V, I _C = 0.5 A, I _{B1} = 25 mA, I _{B2} =-25 mA)		87		ns
	etric performance is indicated in the Electrical Characteristics for the liste	d toot conditions		I muios notos	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{4.} Pulse Condition: Pulse Width = 300 μsec, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS

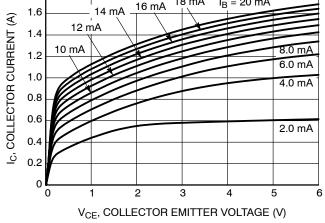
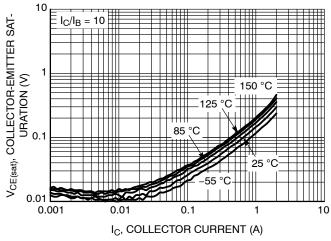



Figure 3. Collector Current as a Function of Collector Emitter Voltage

10

Figure 4. Collector-Emitter Saturation Voltage

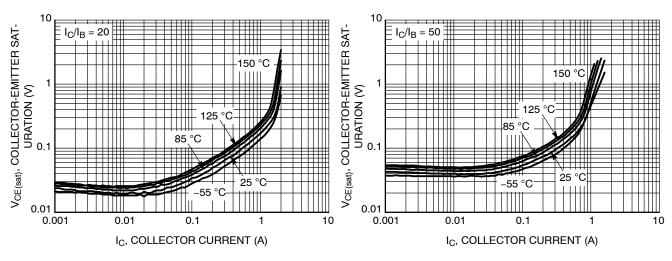


Figure 5. Collector-Emitter Saturation Voltage

Figure 6. Collector-Emitter Saturation Voltage

TYPICAL CHARACTERISTICS (continued)

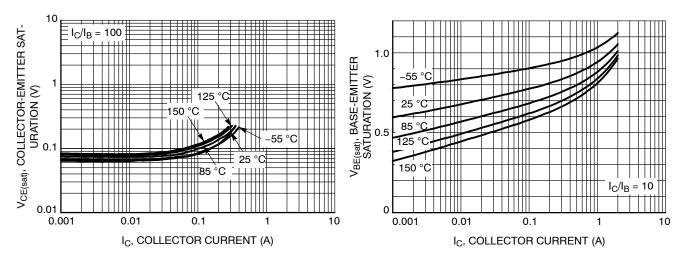


Figure 7. Collector-Emitter Saturation Voltage

Figure 8. Base-Emitter Saturation Voltage

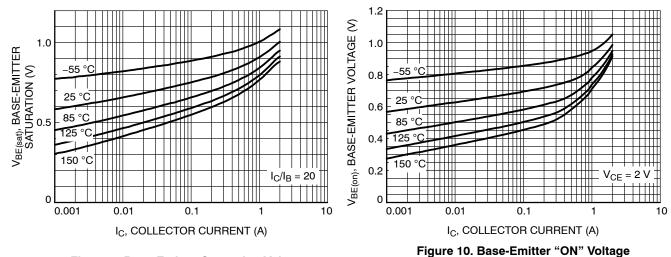
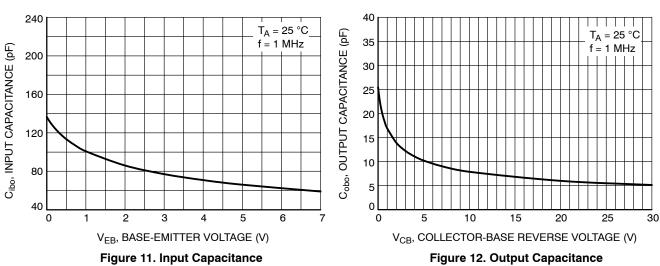



Figure 9. Base-Emitter Saturation Voltage

TYPICAL CHARACTERISTICS (continued)

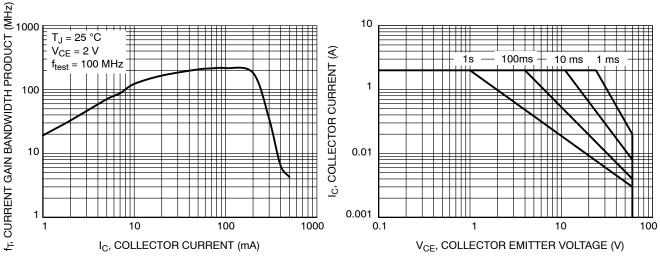


Figure 13. f_T, Current Gain Bandwidth Product

Figure 16. Safe Operating Area $(T_A = 25^{\circ}C)$

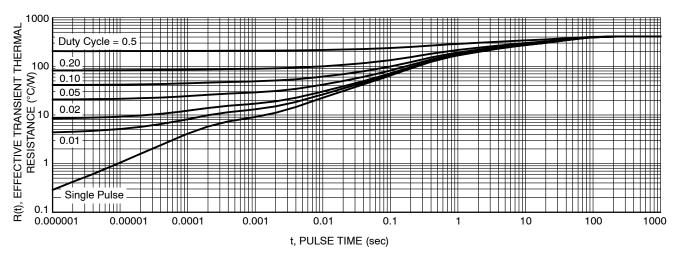


Figure 14. Thermal Resistance by Transistor

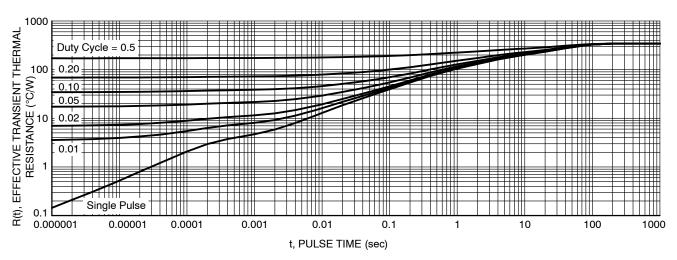


Figure 15. Thermal Resistance for Both Transistors

REVISION HISTORY

Revision	Description of Changes	Date
4	NVMFS5C456NLWFT1G, NVMFS5C456NLWFT3G OPN's Marked as Discontinued.	7/16/2025

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales